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I. INTRODUCTION 

  We are interested in the numerical solution of initial-value problem for neutral functional differential equations 

(NFDEs), which take the form: 
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Under the conditions 
1

H   and 
2

H  the problem (1) has a unique solution  )( xy   [1]. The equations of 

type (1) have applications in many fields such as control theory, oscillation theory, electrodynamics, 
biomathematics, and medical science. Numerical methods for the problem (1) were discussed extensively by many 

authors; see [2-26]. 

ABSTRACT 
This paper is concerned with the numerical solution of neutral functional differential equations (NFDEs). 

Based on the ultraspherical  -stage continuous implicit Runge-Kutta method is proposed. The 

description and outlines algorithm of the method are introduced. Numerical results are included to 

confirm the efficiency and accuracy of the method. 
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This paper is concerned with the numerical solution of neutral functional differential equations (NFDEs). Based on 

the ultraspherical  -stage continuous implicit Runge-Kutta method is proposed. In section 2, we will adapt a finite 

Ultraspherical expansion to approximate 

t

t
i

dssf )( and (.)f  on the interval 1)1(0,  NiI
i . Also, 

an easily implemented numerical method for NFDEs will be derived. Finally, in section 3 we present some 

numerical examples; which show that the presented method provides a noticeable improvement in the efficiency 
over some previously suggested methods. 

 

II. THE NUMERICAL METHOD 

 

 

2. 1 The Description of the method  

 Let )(:
10 N

ttt   define a partition for ],[
0 N

tt , with the step size 

iii
tth 

1 . 

Each subinterval ],[
1


iii

ttI  is divided by the Chebyshev collocation points: 
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This method is based on a finite Ultraspherical expansion in each subinterval 1)1(0,  NiI
i . Consider the 

approximation )(
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  as follows: 
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Here )(
][

xC
r


 is the r-th Ultraspherical polynomial. As especial cases, at 0 give Chebyshev 

Polynomials of the first kind )()(
]0[

xTxC
rr

 , at 
2

1
  give Legendre Polynomials 
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 , at 1  give Chebyshev Polynomials of the second kind )(
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A summation symbol with double prims denotes a sum with the first and last terms halved.  
 

Now, we can easily show that the following relations are true: 
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Using (3), (4) and (5) the indefinite integral sdsf
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and  


l  is the Kronecker delta. 

 From the relations (2), (6) and (7) , we obtained the following results: 
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We notice that the matrix B  of  El-Gendi's method [27], is the same matrix 
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Suppose the approximations of )( ty  and  )( tz  are given for i
tt   . On ],(

1ii
tt , we define the  -

stage  method ][ UM  , as follows 
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2. 2 The Algorithm of  -stage method  

 

The described method represents a generalization of the methods given by Jackiewicz [7-8], for 

3,2,1  and 0 . The algorithm of the  -stage method is given below:- 

 

STEP 1: Input   1)1(0,,,  NjIhN
jj . 

 

STEP 2: Put 0i  

STEP 3: Compute )(

~

ij
ty and )(

~

ij
tz on 1)1(1,  NjI

j  , by solving the system of  -equation (12). 

STEP 4: Store the computed values )(

~

ij
ty and )(

~

ij
tz on 1)1(1,  NjI

j  . 

 

STEP 5: If  1 Ni  go to step 6, otherwise set 1 ii and go to step 3. 

STEP 6: Output the results )(

~

ij
ty and )(
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ij
tz 1)1(0,  Ni . 

 
 

 

III. NUMERICAL EXAMPLES 

 

 

In this section, we present the result of some computational experiments by applying our UM  method. 

 

Example 1: (Jackiewicz [10]) 
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Here   ))2(cos1(5.0)( ttt   .  The exact solution is )3(ln)( tty  . 



Ultraspherical Solutions For… 

||Issn 2250-3005 ||                                                       || March || 2014 ||                                                                           Page 36 

Example 2: (Jackiewicz [10]) 
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Here the exact solution is )(ln)( tty  . 

 
 

Example 3: (Jackiewicz [10]) 
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Here the exact solution is
t

ety )( . 

 

Example 4: (Jackiewicz [10]) 
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Here the exact solution is
)2(sin

)(
t

ety  . 

 
 

In tables (1)-(4), we give E for 2-UM method and E for the best method of Jackiewicz; 10
CC  method 

[10], where E denotes the global error at the end point N
t . 

 

Example 5: (Kappel-Kunish [15] and Jackiewicz [10]) 
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Here the exact solution is given by  
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Here, the first derivative has a discontinuity at  0t  and   1t . 

          In example 5, we give E for the method 2-UM, 5-UM, 8-UM and 10
CC  in Table (5), the  - UM methods, 

for large , make a little improvement in the computed results, the reason is due to there exist discontinuity for the 

first derivative of )( ty at  0t  and 1t . These results indicate that the  - UM method is better than 

the one-step methods of Jackiewicz [10]. 
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Example 6: (Castleton-Grimm [4] and Jackiewicz [8])       
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. The theoretical solution is  ))2(cos(ln5.0)( tty  . 

 

Example 7: (Castleton-Grimm [4] and Jackiewicz [8])       
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The theoretical solution is  )sin()( tty  . 

 

Example 8: (Pouzet [16] and Jackiewicz [8])           
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The exact solution is  tty )( . 
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In Tables (6)-(8), we give the exact solution )(
n

ty  in the second column, and )( hy
n  which denotes 

the computed value )(
nh

ty  at every n
tt  , the computed value of )( hy

n  are represented in two lines, 

the first line for 2-UM and the second line for the method of Jackiewicz [8]. The results given in Tables (6) and (7) 

are much better than those obtained by Castleton-Grimm [4] and also, those obtained by Jackiewicz [8]. The results 

given in Table (8) are much better than those obtained by Jackiewicz [8]. 

When solving the nonlinear equations, the computations are terminated when two successive 

approximations differed by less than 3
10 h . 

 

IV. CONCLUSIONS 

In this paper we construct a method based on the Ultraspherical approximation. This method can be applied to 

solve different types of NFDEs. The experimental comparison, presented in this paper, shows that this method is 

more efficient than the previously introduced methods. In addition, the  - UM method can be easily implemented 

on computer compared with the Lagrange multipliers and their integrals which given by Jackiewicz [10]. 
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