
International Journal of Computational Engineering Research||Vol, 04||Issue, 2||

 

||Issn 2250-3005 ||                                                     ||IJCER||2014||                                                                                 Page 1 

Optimizing Design Cost of System by using Dynamic 

Programming 

1, 
K Indira Priyadarsini,

 2, 
Amanulla Mohammad 

1, 
M.TECH (SE) 

2, 
Assistant Professor (CSE) 

G.I.E.T, RAJAHMUNDRY 

 

 
 

 

 

 

 

 

 

 

I. INTRODUCTION: 

Software development organizations survive in a competitive market by profiting from the conversion 

of developers’ effort to useful and successful software products. To build such products, the organization 

usually follows a process that divides the development effort into several activities. Each of these activities 

requires specific characteristics (e.g., such as skills, capabilities, and experience). Most of these characteristics 

are sought in human resources assigned to accomplish the activities. Search-based software engineering   is an 

emerging discipline that aims to decrease the cost of optimizing system design by using algorithmic search 

techniques, such as genetic algorithms or simulated annealing, to automate the design search. In this paradigm, 

rather than performing the search manually, designers iteratively produce a design by using a search technique 

to find designs that optimize a specific system quality while adhering to design constraints. Each time a new 

design is produced, designers can use the knowledge they have gleaned from the new design solution to craft 

more precise constraints to guide the next design search. Search-based software engineering has been applied to 

the design of a number of software engineering aspects, ranging from generating test data to project 

management and staffing   to software security. A common theme in domains where search-based software 

engineering is applied is that the design solution space is so large and tightly constrained that the time required 

to find an optimal solution grows at an exponential rate with the problem size. These vast and constrained 

solutions spaces make it hard for designers to derive good solutions manually. One domain with solution spaces 

that exhibit these challenging characteristics is hardware/software co-design. A key problem in these design 

scenarios is that they create a complex cost-constrained producer/consumer problem involving the software and 

hardware design. The hardware design determines the resources, such as processing power and memory, that are 

available to the software. Likewise, the hardware consumes a portion of the project budget and thus reduces 

resources remaining for the software (assuming a fixed budget). The software also consumes a portion of the 

budget and the resources produced by the hardware configuration. The perceived value of system comes from 

the attributes of the software design, e.g., image processing accuracy in the satellite example. The intricate 

dependencies between the hardware and software’s production and consumption of resources, cost, and value 

make the design solution space so large and complex that finding an optimal and valid design configuration is 

hard. 
 

II. MOTIVATING EXAMPLE: 
This section presents a satellite design example to motivate the need to expand search-based software engineering 

techniques to encompass cost- constrained hardware/software producer consumer co-design problems. Designing satellites, 

such as the satellite for NASA’s Magnetospheric Multiscale (MMS) mission [11], requires carefully balancing 

ABSTRACT 
 Search based software engineering is an emerging discipline that optimizing the cost of system 

design by using algorithmic search techniques. For example in the design article intelligence system that 

help to crime investigation designs. Use the minimal amount of computing between to reduce weight and 

lost while supporting training and reorganization task running on board. Hard ware and software 

(system) design is a process which indentify software and hardware knapsack. Dynamic programming is 

a problem solving technique which solves the optimization design cost. This paper provide how cost. 

Constrained problem can be modeled as set of two dimensional knapsack problems and provides a frame 

work and algorithm to optimize design cost of system. An experimental result showing that results 

reaches the maximum of optimization solution value. 

 



Optimizing Design Cost Of System… 

 

||Issn 2250-3005 ||                                                     ||IJCER||2014||                                                                                 Page 2 

hardware/software design subject to tight budgets Figure 1 shows a satellite with a number of possible variations in software 

and hardware design. 

 

 
Fig .1 

 

 

 
Fig.2 

 

The software and hardware design problems are hard to solve individually. Each design problem 

consists of a number of design variability points that can be implemented by exactly one design option, such as 

a specific image processing algorithm. Each design option has an associated resource consumption, such as cost, 

and value associated with it. Moreover, the design options cannot be arbitrarily chosen because there is a limited 

amount of each resource available to consume. 

 

 
Fig.3 

Figure 2 shows an example MMKP problem where two sets contain items of different sizes and values. 

At most one of the items A,B, and C can be put into the knapsack. Likewise, only one of the items D, E, and F 

can be put into the knapsack. The goal is to find the combination of two items, where one item is chosen from 

each set, that fits into the knapsack and maximizes the overall value. 

 



Optimizing Design Cost Of System… 

 

||Issn 2250-3005 ||                                                     ||IJCER||2014||                                                                                 Page 3 

III. PROBLEM DESCRIPTION: 
MMKP co-design problem, CoP, as an 8-tuple: 

CoP =< Pr,Co, S1, S2, S,R,Uc(x, k),Up(x, k) > 

where: 

• Pr is the producer MMKP problem (e.g., the hardware choices). 

• Co is the consumer MMKP problem (e.g., the softwarechoices). 

• S1 is the size of the producer, Pr, knapsack. 

• S2 is the size of the consumer, Co, knapsack. 

• R is the set of resource types (e.g., RAM, CPU, etc.) that can be produced and consumed by Pr and Co, 

respectively. 

• S is the total allowed combined size of the two knapsacks for Pr and Co (e.g., total budget). 

• Uc(x, k) is a function which calculates the amount of the resource k ⊂ R consumed by an item x ⊂ Co (e.g., 

RAM consumed). 

• Up(x, k) is a function which calculates the amount of the the resource k ⊂ R produced by an item x ⊂ Pr (e.g., 

RAM provided). 

 

Let a solution to the MMKP co-design problem be defined as a 2-tuple, < p, c >, where p ⊂ Pr is the set 

of items chosen from the producer MMKP problem and c ⊂ Co is the set of items chosen from the consumer 

MMKP problem. A visualization of a solution tuple is shown in Figure 3. value of the solution as the sum of the 

values of the elements in the consumer solution: 

 
where j is the total number of items in c, cj is the jth item in c, and value of() is a unction that returns the value 

of an item in the consumer solution. 

 

 
 

IV. ALGORITHM OVERVIEW: 
Inputs: 

CoP = < Pr,Co, S1, S2, S,R,Uc(x, k),Up(x, k) > 

D = stepsize 

Algorithm: 

1) For int i = 0 to ⌊ S/D⌋ , set S1 = i ∗  D and S2 = 

S − S1 

2) For each set of values for S1 and S2: 

2.1) Solve for a solution, tc, to Co, given S2 

2.2) Calculate a resource consumption heuristic 

V r(k) for the resource in r ∈  R: 

V r(r) = P|tc| 

j=0 Uc(tcj , k) 

P|R| 

j=0P|tc| 

k=0 Uc(tcj , k) 

 



Optimizing Design Cost Of System… 

 

||Issn 2250-3005 ||                                                     ||IJCER||2014||                                                                                 Page 4 

2.3) Solve for a solution, p, to Pr that maximizes the 

sum of the values of the items selected for the 

knapsack, P|p| 

k=0 V alue(pk), where the value of 

the kth item is calculated as: 

V alue(pk) = 

|R| 

X 

j=0 

V r(rj ) ∗  Up(pk, rj) 

2.4) For each resources rj ∈  R, calculate the amount 

of that resource, P(r), produced by the items I p: 

P(r) = Up(p0, rj)+Up(p1, rj) . . .Up(p|p|−1, rj ) 

2.5) Create a new multidimensional knapsack problem, 

Cmo, from Co, such that the maximum size 

of each dimension of the new knapsack is defined 

by the vector: 

Sm2 = (S2, r0, r1, . . . r|R|−1) 

2.6) Solve for a solution, c, to Cmo and add a solution 

tuple < p, c > to the list of candidate solutions, 

lc, for CoP 

3) Sort the potential solutions, lc, of CoP and output 

both the highest valued solution and the list of other 

potential solutions. 

 

V. RESULTS: 

 
 

results are applicable to systems that have hard real time timing constraints and resource consumption 

characteristics. In particular, resources, such as CPU utilization, must have fixed limits. Moreover, the 

calculations are based on static worst-case bounds on resource consumption that must be known at design time. 

The results do not apply to systems where design decisions need to be based on dynamically changing resource 

consumption profiles. Each experiment used a total of 100 budget iterations (T = 100). We also used the M-

HEU MMKP approximation algorithm as our MMKP solver. All experiments were conducted on an Apple 

MacBook Pro with a 2.4 GHz Intel Core 2 Duo processor, 2 gigabyes of RAM, running OS X version 10.4.11, 

and a 1.5 Java Virtual Machine (JVM) run in client mode. The JVM was launched with a maximum heap size of 

64mb (-Xmx=64m). 

 

VI. EXPERIMENT RESULTS WITH RANDOM DATA: 
 When  compared the algorithms on a series of problems that were completely randomly generated. For 

these problems, we did not know the true optimal value. We generated 100 problems with 50 sets per MMKP 

problem and 15 items per set. This yielded a solution space size of 15100. In order to ensure that we generated 

tractable problem instances, we set extremely loose resource constraints on the problems to create a high 

probability that a solution existed. 

 

VII. CONCLUSION: 
Designing hardware and software in tandem to maximize a system capability can be an NP-hard 

activity. Search-based software engineering is a promising approach that can be used to leverage algorithmic 

techniques during system co-design.This paper presented a polynomial-time search-based software 14 

engineering technique, called Allocation-baSed Configuration Exploration Technique (ASCENT), for finding 

near optimal hardware/software co-design solutions 

 



Optimizing Design Cost Of System… 

 

||Issn 2250-3005 ||                                                     ||IJCER||2014||                                                                                 Page 5 

This paper also provided how cost. Constrained problem could be modeled as set of two dimensional 

knapsack problems and provides a frame work and algorithm to optimize design cost of the system. 

 

REFERENCES: 
[1]  M. Abdelhalim and S.-D. Habib. Modeling Communication Cost and Hardware Alternatives in PSO Based HW/SW Partitioning. 

In Proceedings of the International Conference on Microelectronics, pages 111–114, Dec. 2007. 

[2]  M. Akbar, E. Manning, G. Shoja, and S. Khan. Heuristic Solutions for the Multiple-Choice Multi-dimension Knapsack Problem. 

In Proceedings of the International Conference on Computational Science-Part II, pages 659–668. Springer-Verlag London, UK, 
2001. 

[3]  A. Barreto, M. Barros, and C. Werner. Staffing a Software Project: A Constraint Satisfaction and Optimization-based Approach. 

Computers and Operations Research, 35(10):3073–3089, 2008. 
[4]  T. Wiangtong, P. Cheung, and W. Luk. Comparing three heuristic search methods for functional partitioning inhardware–software 

codesign. Design Automation for Embedded Systems, 6(4):425–449, 2002. 

[5]  K. Deb. An Efficient Constraint Handling Method for Genetic Algorithms. Computer methods in applied mechanics and 
engineering, 186(2-4):311–338, 2000. 

[6]  T. Wiangtong, P. Cheung, and W. Luk. Comparing three heuristic search methods for functional partitioning inhardware–software 

codesign. Design Automation for Embedded Systems, 6(4):425–449, 2002.  
[7]  J. Clark and J. Jacob. Protocols are Programs Too: the Meta-heuristic Search for Security Protocols.Information and Software 

Technology, 43(14):891–904, 2001. 

[8]  J. Gosling. Introductory Statistics. Pascal Press, Glebe, Australia, 1995. [9] M. Harman. The Current State and Future of Search 
Based Software Engineering. International Conference on Software Engineering, Minneapolis, MN, pages 342–357, May 2007. 

[9]  P.-A. Hsiung, P.-H. Lu, and C.-W. Liu. Energy efficient co-scheduling in dynamically reconfigurable systems. In Proceedings of 

the International Conference on Hardware/software Codesign and System Synthesis, Salzburg, Austria, pages 87–92, October 
2007. 

[10]  G. Antoniol, M. Di Penta, and M. Harman. A RobustSearch-based Approach to Project Management in the Presence of 

Abandonment,Rework.Proceedings of the International Symposium on Software Metrics, pages 172–183, Sept. 2004. 
[11  L. Chung. Non-Functional equirements in SoftwareEngineering. Springer, 2000.  

[12]  M. Harman and B. Jones.Search-based software  engineering. Information and Software Technology,43(14):833–839, 2001. 

[13]  D. Vanderster, N. Dimopoulos, and R. Sobie. Metascheduling multiple resource types using the MMKP. In Proceedings of the 7th 
IEEE/ACM International Conference on Grid Computing, Barcelona, Spain, pages 231–237, Sept. 2006. 

[14]  P. McMinn. Search-based software test data generation: a survey. Software Testing, Verification & Reliability,14(2):105–156, 

2004. 
[15]  M. Harman. The Current State and Future of Search Based Software engineering. International Conference on 

SoftwareEngineering, Minneapolis, MN, pages 342–357, May 2007 


