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ABSTRACT
The aim of present paper is to derive a fractional derivative of the multivariable H-function of Srivastava
and Panda [9], associated with a general class of multivariable polynomials of Srivastava [6] and the
generalized Lauricella functions of Srivastava and Daoust [11] the generalized M-series. Certain special
cases have also been discussed. The results derived here are of a very general nature and hence
encompass several cases of interest hitherto scattered in the literature.

l. INTRODUCTION

In this paper the H-function of several complex variables introduced and studied by Srivastava and
Panda [9] is an extension of the multivariable G-function and includes Fox’s H-function, Meijer’s G-function of
one and two variables, the generalized Lauricella functions of Srivastava and Daoust [11], Appell functions etc.
In this note we derive a fractional derivative of H-function of several complex variables of Srivastava and Panda
[9], associated with a general polynomials (multivariable) of Srivastava [6] and the generalized Lauricella
functions of Srivastavaand Daoust [11].Generalized M-series extension of the both Mittag-Laffler function and
generalized hypergeometric functions.

1. DEFINITIONS AND NOTATIONS
By Oldham and Spanner [4] and Srivastava and Goyal [7] the fractional derivative of a function f(t) of

complex order y
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Where m is positive integer.
The multivariable H-function is defined by Srivastava and Panda [9] in the following manner
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where (i=+4/-1) .

The general class of multivariable polynomials defined by Srivastava [6] defined as
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where qj=0,1,2,...; pj¢0(j=1,..., s) are non-zero arbitrary positive integer the coefficients

A [qg e k1 s O k . ] being arbitrary constants, real or complex.

The following known result of Srivastava and Panda [10]
Lemma. If (A >0),0<x<1,Re (1+p) >0, Re(q) > -1, A;>0and Aj>00r Aj=0and |zi|<o,i= 1,2,....,r then
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where M >0,

In this paper, we also use short notations as given
F | s [=F] ¢ | ...(2.6)

denote the generalized Lauricella function of several complex variable.
The special case of the fractional derivative of Oldham and Spanier [4] is

C(p+1)

F(p-y+1)
The generalized M-series is the extension of the both Mittag-Leffler function and generalized hypergeometric
function.

It represent as following

D:(t”)z th Re(p) > -1 (2.7)
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Il.  THE MAIN RESULT
Our main result of this paper is the fractional derivative formula involving the Lauricella functions,
generalized polynomials and the multivariable H-function and generalized M-series as given
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Proof. In order to prove (3.1) express the Lauricella function by (2.4) and the multivariable H-function in terms of
Mellin-Barnes type of contour integrals by (2.2) and generalized polynomials given by (2.3) respectively and

Re (p)+z Pl o > -1
(o)

generalized M-series (2.8) and collecting the power of (¢ — x) and (y — ¢). Finally making use of the result

(2.7), we get (3.1).
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IV.  PARTICULAR CASES

With A = A = C = 0, the multivariable H-function breaks into product of Fox’s H-function and
consequently there holds the following result
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valid under the conditions surrounding (3.1).
1. If¢(i) =50 =1, (i=1,2,...)equation (4.1) reduces to
|f ) [ .
T 2, {n(y-¢) 1 M, M N ]
D 4(g_X)c;nc;(y_f)cwpF| 171: |S 1 SI(é x):(y() :
’ | : o N N ) i
| Lz ny-0 ") (-9 "5 (y-0)"s |
AL "y . r MO [ o, ; p® ]
M, 4(0=x "(y=0) "} G = lw {£(0=x} "oy -0)} .
- 0 5O i q®
i=1 B™.D I_ [ J
o (N;/M)) (NS/MS)(_Nl)Mlkl (—NS)NIsks
q%(ﬂ(%“o kz . kzzo ) - AN 1’k1’ ) Ns,ks]
170 s 1 s
[
0,3 :(U,V) s (u (I’) () )I wl(—x) clyplglerGl (—a—[}:pl+61,4..,pr+6r),
AH
3318 .07 8 00 | . s )
| Wr(_x)}cr (y)przpr Sy Lafc—z aiki—klk:cl ,,,,, ch
L i-1

||Issn 2250-3005 || ||February||2014|| Page 38




Fractional Derivative Associated With The...

[ |- | 0|
L—c—z alkl—klkicl ..... GrJ,L—p—k—z biki—)uzk:p:L ,,,,, prJ,[( b)Y [(b )] |
: =t I (42)
S
B-p-k=3 bik;=A,kipy.p [ (y=a=PBipy+o e p +o ) [(d) s [ ® I
" J ]
valid under the conditions as obtainable from (3.1).
Il. Let N;=0 (i = 1,...,s), the result in (3.1) reduces to the known result given by Sharma and Singh [ ], after a
little simplification.
IV. Replacing Ny,...,Ns by N in (3.1) we have a known result recently obtained by Chaurasia and Singh [ ].
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