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I. INTRODUCTION 
 In this paper the H-function of several complex variables introduced and studied by Srivastava and 

Panda [9] is an extension of the multivariable G-function and includes Fox’s H-function, Meijer’s G-function of 

one and two variables, the generalized Lauricella functions of Srivastava and Daoust [11], Appell functions etc. 

In this note we derive a fractional derivative of H-function of several complex variables of Srivastava and Panda 

[9], associated with a general polynomials (multivariable) of Srivastava [6] and the generalized Lauricella 

functions of Srivastavaand Daoust [11].Generalized M-series extension of the both Mittag-Laffler function and 

generalized hypergeometric functions. 

 

II. DEFINITIONS AND NOTATIONS 
  By Oldham and Spanner [4] and Srivastava and Goyal [7] the fractional derivative of a function f(t) of 

complex order  
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Where m is positive integer. 

The multivariable H-function is defined by Srivastava and Panda [9] in the following manner 
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where  1  i . 

The general class of multivariable polynomials defined by Srivastava [6] defined as  
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ABSTRACT 
The aim of present paper is to derive a fractional derivative of the multivariable H-function of Srivastava 

and Panda [9], associated with a general class of multivariable polynomials of Srivastava [6] and the 

generalized Lauricella functions of Srivastava and Daoust [11] the generalized M-series. Certain special 

cases have also been discussed. The results derived here are of a very general nature and hence 

encompass several cases of interest hitherto scattered in the literature. 
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where s)1,...,  j0p210q
jj

 are non-zero arbitrary positive integer the coefficients 


ss11

kqk[qA being arbitrary constants, real or complex. 

 The following known result of Srivastava and Panda [10] 

Lemma. If ( ≥ 0), 0< x < 1, Re (1+p) > 0, Re(q) >  1, i > 0 and i > 0 or i = 0 and | zi | <  , i = 1,2,…,r then  
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where 
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where M ≥ 0, 

In this paper, we also use short notations as given  
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denote the generalized Lauricella function of several complex variable. 

The special case of the fractional derivative of Oldham and Spanier [4] is 
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The generalized M-series is the extension of the both Mittag-Leffler function and generalized hypergeometric 
function. 

It represent as following 
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III. THE MAIN RESULT 
 Our main result of this paper is the fractional derivative formula involving the Lauricella functions, 

generalized polynomials and the multivariable H-function and generalized M-series as given  
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where 
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Proof. In order to prove (3.1) express the Lauricella function by (2.4) and the multivariable H-function in terms of 
Mellin-Barnes type of contour integrals by (2.2) and generalized polynomials given by (2.3) respectively and 

generalized M-series (2.8) and collecting the power of   (y and x) Finally making use of the result 

(2.7), we get (3.1). 
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IV. PARTICULAR CASES 

 With  = A = C = 0, the multivariable H-function breaks into product of Fox’s H-function and 
consequently there holds the following result 
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valid under the conditions surrounding (3.1). 

II.  If  1
(i)(i)

(i = 1,2,…) equation (4.1) reduces to 
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valid under the conditions as obtainable from (3.1). 

III. Let Ni = 0 (i = 1,…,s), the result in (3.1) reduces to the known result given by Sharma and Singh [  ], after a 

little simplification. 

IV. Replacing N1,…,Ns by N in (3.1) we have a known result recently obtained by Chaurasia and Singh [  ]. 
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