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ABSTRACT:

An Artificial Neural Network, often just called a neural network, is a mathematical model
inspired by biological neural networks. A neural network consists of an interconnected group of
artificial Neurons. An artificial neuron is a mathematical function conceived as a crude model, or
abstraction of biological neurons. This project describes a system realization of translating data from
electrochemical sensor for neuron to process on FPGA. The structure of a neuron is split into various
sub blocks and these blocks will be implemented individually first and then they are integrated to form
the entire neuron. This project will be implemented in three stages. First we have to convert the analog
signal coming from the analog circuitry using an ADC (analog to digital converter). In this project the
12 bit ADC chip will be used to convert analog signal from 4 channel analog circuitry to digital. The
next module is the design of mathematical operation. This includes issues relating to data structure,
design of Multiplier Accumulator (MAC) and activation function implementation. The final module is
displaying the result from the data that have been accumulated by the neuron. The proposed
architecture is simulated using Modelsim and synthesized using Xilinx ISE and it will be implemented
on FPGA board for hardware implementation and testing. The Xilinx Chip scope tool will be used to
test the FPGA inside results while the logic running on FPGA.
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1. INTRODUCTION

Electrochemical sensors are often used to deta@mine concertrations of various aralytes in testing
samples such as fluids and disolved solid materials. Electrochamical sensors are frequently used in
occupational safety, medcal engineering, process measuring engineering, environmental analysisANN is
known to be able to improve eledrochemical sensor this signal interpretation. In general, hardvare redli zation
requires a good mmpramise between acaracy and complexity of the processing units to allow a low cost
effective device. In our project we are going to implement an artificial neuron with four inputs. The artificial
neuron which we are implementing in our project is a prototype of the biological n&asically a neuron
consists of N inputs coming from deitds get multiplied by the synaptic weights and then they are processed
by soma .Depending on the strength of the input signals the neuron gets fired. Similarly we are going to
implement an artificial neuron with 4 inputEhe Inputs are provided by anadog circuitry which has four
channels. This analog circuitry can provide the Analog voltages for 4 chahhislacts as input source for our
artificial neuron. Since our FPGA cannot dealvitie analog voltagewse convert the analog input into digital
output. For tis purpose we are going tse 2 ADC modules in our projecthe digital platform is Field
Programmable Grid Array (FPGA).The approach for this project can be represerted in block diagram as
shown in the Fig.1. The key issue in designing this system is modular desgn for recanfigurahlity. The first
issue is to convert the signal from an amlog to a dgital form, by sampling it using an analog-to-digital
converta (ADC), which turns the aralog signal into a sream of numbers.
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Fig.1.Generalflow of the projectsystemlinking applied chemical sensor to digital processing

||Issn 2250-3005 || ||July||2013]| Page 42




FPGA Modeling Of

The next module isthe design of mathematical operation. This includesisaies relating to data structure,
design of Multiplier Acaumulator (MAC) and adivation function implementation. The final module is
displaying the result from the data that have been accumulating by the neuron. Chipscope tool is used to
view the Results after dumping the bit file into the FPGA.

II. DESIGN AND METHODOLOGYS
This section presents the design of the sub madules in implemerting Fig 1. This covers the
interfacing issues such as analog to digital implementation, data structure and the neuon architecture
topology.

2.1.Analog to Digital Interfacing

In this project the 12 bit ADC 7476 were usedto convert andog signal from electrochamical
sensor to digital. It is a successve gproximation 12-bit A/D cornverter with onboard sample and told
circuitry. As we know that the analog to digital converter is used to convert the analobisigrtae digital
samples. And we are using the 12 bit A/D converter means at the ADC output we get the 12 bit sample values of
the giving a message signal (Modulating signal) through ADC. Hcisa&inel ADC means we can give 2 inputs
at a time and henee are connecting the input to the ADC from the Function Generator by giving the frequency
levels and selecting a wave(Sine or Sawtooth, Square..etc) and constant voltageQewetzunication with
the device is done using asimple serial interface competible with the SPI protocol. SPI is aninterface
that alows one chip to communicate with one or more other chips andin this case is ADC 7476 with
the FPGA-Spartan 3bboard

The SPI algorithm is required to be implemented in hardware description language (HDL) on
FPGA.Fig.2. denmonstrates SPI interfacing that alows one chip to communicate with one or mare other chips.
As shown in thefigure above the wires are cdled SCK, MOSI, MISO and SSH., and one of the chip is
called the SPI magter, while theotherthe SPI dave. A clock is generaed by the master, andone bt of data is
transferred each time the clock togges. Data is seridized before being tranamitted, so that it fits on a
single wire. There are two wires for data, one for each diredion. Themaster and dave know beforehand
the details of thecommunication (bit order, length of data words exchanged, etc...). The maste is
the one who initiates communication. Beause SPI is synchronous and full-duplex, every time theclock
toggles, two bhits are actudly transmitted (one in eachdirection). In term of performance, SPl can easily
achieve afew Mbps (megahbitsper-secands) [4]. For this module, theaproach taken is hadware
implemertation of existing technique, tailored tol12-bit environmert.
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Fig.2.SPI Interfacing applied to signal

2.2. Digital Design: Data Structure and M odulesfor Neur on

In this sedion, there are 2 major parts. data structure and digital modules for neuron designon
FPGA. For despn tools, Modelsim to smulate the design at multiple stages throughout the design process
andQuartus to programthe boardare usel. Generally, a data structure is a particular way of storing and
organizing daa in a computer so that it can be usedefficiently. Data structures are generally based on
the alility of a computer/chip to fetch and store data at any place in itsmemory, speified by an address
that can be manipuated by the program. For this project the dat computed from ADC will be
converted into fixed-point number representdion.
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Fixedp oi nt DSPs u s efixaedpont nontberspinl difierenin Q@ formats. Among the
major issuesin data structure is the converson technique of fixed-point number from a Q format to an
integer value so that it can be stored in memory and recognized by simulator. It is aso required to keep
track of the position of the binary point when manipulating fixed- point numbes in writing verilog codes
The DSP (Digital Signal Processim) flows throughait the converson to Q format represertation are shown in
the Fig. 3. As shawn in the flowchart, a fractional number is converted to an intege value that can be
recognized by a DSP assembler using the Q15 format .The number is first normalize thelscded down
by 2 to the appropriate vaue that can beacommadated by the bits number. Findly, the value will
be rounded (truncaed) to integer value and be represered in binary number. A neuwon can be viewed
as processig data in three steps;the weighting of its input values, the summation of them all and ther
filtering by a activation function.

The Neuron can be expressed by the following equation:
y; = (X wyx-6;) )
i

where y is the output of the neuron, w is the synaptic weight, x is theinput and d is the bias.
The subscript i denoteghe precedng neuron andj the neuron considered. The neuron computes the product
of its inputs, with the corregonding synagic weights, and then the results are added. Theresult is
presented to a comparison unit designedto representan appropriate adivation fundion such as linea,
sigmoid or hypemoalic tangent. The equation is shown in block diagrans in Fig.4. For the weighted
inputs to be cadculated in pardlel using conveitional design techngues, alarge number of multiplier units
would be required. To avdd this, multiplier/Accumulato architedure has been selected. It takes the input
serially, multiplies them with the corregponding weightandacaimulatestheir sum in a register.
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fig.4., Structure of neuron

The block diagram and flow of the hardware implementation is shown in Fig. 5 and 6. The
accumuladr unit is composel of a bit-serid adder and 16 bit regiser. The design of multiplier
accumulator consists of adder andmultiplier. MAC are frequertly used in generd computing and are
especialy critical to performance of digital signal processng applications. TheMAC typically operae on a
digital, and wsually binary, multiplier quartity and a crresponding digital multiplicand quantity
and generde a kinay product. The design of multiplier accumdator propcedin this projed consists
of adde and multiplier that canacommadate or hande 4 chamel of input (aray of sensor).
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Fig.5:.The flow of proposed neuron architedure
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Fig.6:.Signal handing of multiplier accumulator

The architecture for the MAC is shown in Fig. 6. With tree configuraton as shown in Fig.7, the use
of tile logic is quite uneven and less efficient than with a chain. The idea of this configuraton is that the
2 value from multiplier were addedsepartey. The partition of the computtion is then added at adder4
for the final output. Activation function in aback propagation network definesthe way to obtain output of a
neuron given the collective input from source synapses. The back propagation algorithm requires the
activdion fundion to be continuous and differentiable. It is desirabke to hawe an activation function with
its derivative essy to compute. The mathematical algorithm for tanh goproximation using Taylor 6 s
Seriesexpanson that is used in the hardware calculation is provided by equaion 2: Thedesign flow is
presented in Fg 8.

y=x- X33 + 2x15+... (2)
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Fig.7:Tree configuration of Multiplier Accumulator
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Fig.8:.Design flow of activation function

I1I. RESULTS AND DISCUSSION

3.1: Simulation Results:
The following chapter consistsof all the software and hardware results obseved in the project. The
results include snapshot®f top modde with the inputs, outptis andintermedite waveforms.
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Fig.9.:Top Module simulation Results

3.2 . Chipscope Results

Chipscope tool is used to vievhe Results after dumping the bit file into the FPGA. We need
ICON(integrated Controller) and ILA(integrated logic analyzer) cores in order to run the chip scope tool. Chip

Scope is an embedded, software basdd olldgirc caomeldoy z & rc.o
Aintegrated | ogic analyzero (ila) into your design a
the signals in your design. Chip Scope provides you with a convenient software based interface for controlling

thetfeigrated | ogic analyzer, o0 including setting the t
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Fig.10.:Chipscope results

IV. CONCLUSION

The basic behaviour of the biological neuron can be emulated in an artificial neuron. A biological
neuron with thie dendrites, soma and axon can be characterized in an artificial neuron as a black box with
inputs and an output. To implement the system the electronic pulses or spikes transmitted through neurons are
replaced by digital signals or pulses. With thkkse things we get an electronic system that reproduces the
behaviour of the biological neuron. The aim is to have the possibility of interconnect more of these artificial
neurons to create a complete neuronal network. In this thesis work we oalfobased our efforts to create
an only artificial neuron. To complete the global system is not too complicate, to interconnect the artificial
neuron with other neuron; the programmer should only connect the output of our neuron with the input of the
next neuron, and in this way, with the other previous and next neurons. Besides, the programmer should codify a
program that governs the relations between the different weights of the neuronal network, but this part is out of
our analysis. With the VHDL a® generated a FPGA can be programmed. Depending of the capacity of the
FPGA used, a larger or less number of neuron can be programmed, depending on the same way of the number
of interconnections of each neurofherefore, according to the results obtaineg can say that we have
designed a system whose performance leads to the achievement of the objectives of the project and at the same
time could work as the main base to develop future applications.
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