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ABSTRACT

Designing efficient search algorithms is a key challenge in unstructured peer-to-peer
networks. Flooding and random walk (RW) are two typical search algorithms. Flooding searches
aggressively and covers the most nodes. However, it generates a large amount of query messages and,
thus, does not scale. On the contrary, RW searches conservatively. It only generates a fixed amount of
query messages at each hop but would take longer search time. We propose the dynamic search (DS)
algorithm, which is a generalization of flooding and RW. DS takes advantage of various contexts under
which each previous search algorithm performs well. It resembles flooding for short-term search and
RW for long-term search. Moreover, DS could be further combined with knowledge-based search
mechanisms to improve the search performance. We analyze the performance of DS based on some
performance metrics including the success rate, search time, query hits, query messages, query
efficiency, and search efficiency. Numerical results show that DS provides a good tradeoff between
search performance and cost. On average, DS performs about 25 times better than flooding and 58
times better than RW in power-law graphs, and about 186 times better than flooding and 120 times
better than RW in bimodal topologies.

INDEX TERMS:Peer-to-peer, performance analysis, search algorithm.

l. INTRODUCTION
N unstructured peer-to-peer (P2P) networks, each nodedoes not have global information about the
whole topology and the location of queried resources. Because of the dynamic property of unstructured P2P
networks, correctly capturing global behavior is also difficult [1], [2]. Search algorithms provide the capabilities
to locate the queried resources and to route the message to the target node. Thus, the efficiency of search
algorithms is critical to the performance of unstructured P2P networks [3]. Previous works about search
algorithms in unstructured P2P networks can be classified into two categories: breadth first search (BFS)-based
methods, and depth first search (DFS)-based methods. These two types of search algorithms tend to be
inefficient, either generating too much load on the system [4], [5], or not meeting users’ requirements [6].
Flooding, which belongs to BFS-based methods, is the default search algorithm for Gnutella network [7], [8].
By this method, the query source sends its query messages to all of its neighbors. When a node receives a query

message, it first checks if it has the queried resource. If yes, it sends a
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response back to the query source to indicate a query hit. Otherwise, it sends the query messages to all
of its neighbors, except for the one the query message comes from. The drawback of flooding is the search cost.
It produces considerable query messages even when the resource distribution is scarce. The search is especially
inefficient when the target is far from the query source because the number of query messages would grow
exponentially with the hop counts. Fig. 1 illustrates the operation of flooding. The link degree of each vertex in
this graph is 4. If the network grows unlimited from the query source, the number of query messages generated
by flooding at each hop would be 4, 12, 36, . . ., respectively. If the queried resource locates at one of the third
neighbors, it takes 4p12p36Y452 query messages to get just one query hit.

On the other hand, random walk (RW) is a conservative search algorithm, which belongs to DFS-based
methods [9], [10], [11], [12], [13]. By RW, the query source just sends one query message (walker) to one of its
neighbors. If this neighbor does not own the queried resource, it keeps on sending the walker to one of its
neighbors, except for the one the query message comes from, and thus, the search cost is reduced. The main
drawback of RW is the long search time. Since RW only visits one node for each hop, the coverage of RW
grows linearly with hop counts, which is slow compared with the exponential growth of the coverage of
flooding. Moreover, the success rate of each query by RW is also low due to the same coverage issue.
Increasing the number of walkers might help improve the search time and success rate, but the effect is limited
due to the link degree and redundant path. As the example shown in Fig. 1, RW can only visit 12 vertices of
second neighbors even when the number of walkers is set as 32. Certainly, the search is inefficient because 32
walkers only visit 12 vertices at the second hop.

Authorized licensed use limited to: Shree MotilalKanhaiyalalFomra Institute. Downloaded on August 12,2010
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LIN ET AL.: DYNAMIC SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS

NE
\

? © ey source

&) @) 1stneighbor

\\§Z

'

e\\\L

[ () 2nd neighbor

//% 3rd neighbor

Fig. 1. A simple scenario of P2P network to demonstrate the operation of flooding and RW.

DS overcomes the disadvantages of flooding and RW and takes advantage of different contexts under
which each search algorithm performs well. The operation of DS resembles flooding for the short-term search
and RW for the long-term search. In order to analyze the performance of DS, we apply the random graphs as the
models of network topologies and adopt the probability generating functions to model the link degree
distribution [14]. We evaluate the performance of search algorithms in accordance with some performance
metrics including the success rate, search time, number of query hits, number of query messages, query
efficiency, and search efficiency [9], [15], [16]. Simulation experiments are performed in a dynamic P2P
networking environment in order to collect convincing results for algorithm evaluations. The factors considered
include the network topology, link degree distribution, peer’s joining and leaving, and querying behavior as well
as the activity of file sharing [10], [17], [18], [19]. Our dynamic network model is constructed based on these
factors that strongly reflect the real measurement studies [17], [20], [21], [22]. Numerical results show that DS
could provide a good tradeoff between search performance and cost. On average, DS performs about 25 times
better than flooding and 58 times better than RW in power-law graphs, and about 186 times better than flooding
and 120 times better than RW in bimodal topologies.The rest of this paper is organized as follows: Section 2
shows the related works about the search issue in unstructured P2P networks, followed by the detailed
description of the proposed DS algorithm in Section 3. The performance analysis is given in Section 4.
Numerical results and discussions are given in Section 5. Finally, the conclusion is presented in Section 6.
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1. RELATED WORKS

Flooding and RW are two typical examples of blind search algorithms by which query messages are
sent to neighbors without any knowledge about the possible locations of the queried resources or any preference
for the directions to send. Some other blind search algorithms include modified BFS (MBFS) [23], directed BFS
[6], expanding ring [17], and random periodical flooding (RPF) [24]. These algorithms try to modify the
operation of flooding to improve the efficiency. However, they still generate a large amount of query messages.
Jiang et al. propose a LightFlood algorithm, which is a combination of the initial pure flooding and subsequent
tree-based flooding [25], [26]. DS and LightFlood operate analogously, but DS avoids the extra cost to construct
and maintain the treelike suboverlay.Knowledge-based search algorithms take advantage of the knowledge
learned from previous search results and route query messages with different weights based on the knowl-edge.
Thus, each node could relay query messages more intelligently. Some examples are adaptive probabilistic
search (APS) [27], [28], biased RW [29], routing index (RI) [30], local indices [31], and intelligent search [32].
APS builds the knowledge with respect to each file based on the past experiences. RI classifies each document
into some thematic categories and forwards query messages more intelligently based on the categories. The
operation of local indices is similar to that of super-peer networks. Each node collects the file indices of peers
within its predefined radius. If a search request is out of a node’s knowledge, this node would perform a
flooding search. The intelligent search uses a function to compute the similarity between a search query and
recently answered requests. Nodes relay query messages based on the similarity. There are some other research
works that focus on replicating a reference pointer to queried resources in order to improve the search time [33],
[34].

I1l.  DYNAMIC SEARCH ALGORITHM
In this section, we provide the details of the proposed DS algorithm. Section 3.1 presents the operation
of DS algorithm, and Section 3.2 provides the mechanism to combine DS with the knowledge-based search
algorithms.

3.1 Operation of Dynamic Search Algorithm

DS is designed as a generalization of flooding, MBFS, and RW. There are two phases in DS. Each
phase has a different searching strategy. The choice of search strategy at each phase depends on the relationship
between the hop count h of query messages and the decision thresh-old n of DS.

3.1.1 Phase 1. Whenh _n

At this phase, DS acts as flooding or MBFS. The number of neighbors that a query source sends the
query messages to depends on the predefined transmission probability p. If the link degree of this query source
is d, it would only send the query messages to d_p neighbors. When p is equal to 1, DS resembles flooding.
Otherwise, it operates as MBFS with the transmission probability p.

3.1.2 Phase 2. When h >n

At this phase, the search strategy switches to RW. Each node that receives the query message would
send the query message to one of its neighbors if it does not have the queried resource. Assume that the number
of nodes visited by DS at hop h¥an is the coverage c,, and then the operation of DS at that time can be regarded
as RW with ¢, walkers. However, there are some differences between DS and RW when we consider the whole
operation. Consider the simple scenario shown in Fig. 1. Assume that the decision threshold n is set as 2. When
h >2, DS performs the same as RW with ¢,%12 walkers. Let us consider an RW search with K12 walkers. At
the first hop, the walkers only visit four nodes, but the cost is 12 messages.

6561EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO.5, MAY
2009
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Algorithm: The pscudo-code of dynamic scarch DS
Input: query source s, queried resource f, transmission probabil-
ity p
Output: the location information of f
DS(s, f, p)
/* the operation of s */
h< 0
if (h <=n)
h—h+1
s choose p portion of its neighbors
n; carring h visits these chosen neighbors
elseif (h > 1) i 1
h<—h+1 5 o
mi carring /1 visits one neighbor of s ik
/* the operation of r */
foreach (r)

if (r has the location information of f)
r returns the information to s
i stops
elseif (> TTL)
mi stops
elseif (h <=n)
h< h+l
r choose p portion of its neighbors
mj carring h visits these chosen neighbors
elseif (1 > n)
h< h+l
m; carring I visits one neighbor of »

Fig. 2.The pseudocode of DS algorithm.
Fig. 3.1llustration for the operation of
owledge-based DS algorithm.

RW would generate a large amount of redundant messages when K is set too large.Suppose that s is the query
source, r is the vertex that receives the query message, f is the queried resource, m; is the ith query message, and
TTL is the time-to-live limitation. Fig. 2 shows the pseudocode of DS.In short, DS is designed to perform
aggressively for the short-term search and conservatively for the long-term search. Obviously, the parameters n
and p would affect the performance of DS. In Section 3.2, we will analyze the performance of DS andshow the
effects of parameters n and p.

3.2 Knowledge-Based Dynamic Search

Some knowledge-based search algorithms, including APS, biased RW, RI, local indices, and intelligent
search, are applicable to combine with our DS algorithm, and any training or caching operations are benefit
from our DS algorithm as well. In this section, we present the generic scheme to incorporate these knowledge-
based search algo-rithms with our DS algorithm. We construct the probabilistic function based on the
information learned from the past experiences, with respect to each search target, search time, and local
topology information. Thus, a node has more information to intelligently decide how many query mes-sages to
send and to which peers these messages should be forwarded. Take APS as an example. The peer applying APS
search builds a probability table for each neighbor and each object. It consistently refines its probability table by
the search experiences. If a search query for some object delivers to a certain neighbor successfully, the
probability entry corre-sponding to that neighbor and object is increased. If the search fails finally, it will
decrease the probability entry. In accordance with APS, when a certain node receives a hit from peer i, it adds
10 points for the entry of peer i; if peer i fails to respond the hit to that node, the node subtracts 10 points for the
entry of peer i.

Fig. 3 shows an example of knowledge-based DS algorithm. Node A initializes a search for a certain object. It
makes its forwarding decision of which neighbors should be sent to in accordance with the probability table
shown in Table 1. Assume the messages are sent to nodes B, C, and F. When node B receives the message, it
checks its probability table shown in Table 1 and generates another two query messages to nodes | and G.

1IV. PERFORMANCE EVALUATION
In this section, we present the performance evaluation of DS. We apply Newman’s random graph as the
network topology, adopt the generation functions to model the link degree distribution [14], and analyze DS
based on some performance metrics, including the success rate, search time, query hits, query messages, query
efficiency, and search efficiency. The analysis by generating functions talks about a graph all of whose
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parameters are exactly what they should be on an average random graph. Although the analysis using generat-
ing functions has appeared in many places by physicists, e.g., [10], it maybe not strict enough in the computer
science context.Mihail et al. provide a strict analysis for RWs in power-law random graphs [35].

4.1 Network Model
First, we summarize Newman’s work about the random graph. Let Go0xP be the generating function
for the distribu-tion of the vertex degree k. Godxpb can be represented as

m
Godxb ¥ pix’; a1b
A

X
wherepy is the probability that a randomly chosen vertex in the graph has degree k, and m is the maximum
degree.

TABLE 1
Node C D E B F
Prob. 0.78 0.12 0.04 0.85 0.92
(a)
Node G H I - -
Prob. 0.84 0.23 0.76 - -
(b)

(a) Probability table for node A. (b) Probability table for node B.
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Based on the generating function, the average degree of a randomly chosen vertex is given by

m
1Y hki Yikpi s Go°81p: d2b
k¥4l
X
The average number of second neighbors is
; —
_ (306(316XD
ZYa  dx P Y G, "01pG,%81P;  33p
XYal
where G;8xPb is given by
Ggo o0x
G X [ 4
—o0r
18 P %G, p db

Due to the difficulties to correctly measure and sample the operational P2P networks, there are only limited real
data about the topologies of such networks. In this paper, we will use the top two most common topologies, the
power-law graphs and the bimodal topologies, to evaluate the search performance.

4.1.1 Power-Law Graphs

For the power-law random graph with the degree exponent _, py is proportional to k— [36]. That is,
P/ k—: a5p
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According to [11], the following approximations for the power-law distribution are obtained:

1
GoolPfi 281 _m*b 36p
and
1 w3
G81p fiGlslp 3 ; a7p

assuming2<_<3.

4.1.2 Bimodal Topologies

For the bimodal network topology [12], [29], few ultra-peers are connected to a large number of nodes,
and the rest have few neighbors. This assumption is regarded as realistic and followed by most papers such as
[37] and [38]. The probability that a randomly chosen peer belongs to the

ultra-peers is denoted as puwa, and the probability that this peer belongs to the other part with few neighbors is
thus

Pren¥2s 1 _Puira- The degrees of the ultra-peers and thepeers with few neighbors are denoted as Kyra and Keeyw.
Applying these parameters to (1), (2), (3), and (4), the

average number of neighbors at each hop for the bimodal topologies could be obtained.

4.2 Performance Analysis
4.2.1 Success Rate dSRp

The success rate dSRP is the probability that a query is successful, i.e., there is at least one query hit.
Assume that the queried resources are uniformly distributed in the network with a replication ratio R. SR can be
calculated as

SR¥%1 81 RP®; a8p

whereR is the replication ratio, and C is the coverage. This formula shows that SR highly depends on the
coverage of the search algorithms. We use (8) to obtain an important performance metric, the search time dSTb,
in the following.

4.2.2 Search Time ST b

To represent the capability of one search algorithm to find the queried resource in time with a given probability,
we define the search time 8STb as the time it takes to guarantee the query success with success rate requirement
SRreq. ST represents the hop count that a search is successful with a probabilistic guarantee. Using (8), ST is
obtained when the coverage C is equal to logs; re01_SRreqP. For MBFS search algorithms, this situation occurs
when

p G 1 20101 301 LH12

b db
0 0 _ 18bp _ 0 _ 18b
STMBFS_
9PP STyersd G' 1 G* 1 1- 3 9
b__ db ]

b _0- 16b- db
Y,'°951_Rpa* SFreqp’

Thus, ST for MBFS is

p. G 1 1 log 1 SR
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01 R req
STMBF "% _G,% 18b p® b
S 1p 6 1:
Y _ Ja [

010p

ST of flooding is analog to that of MBFS with probability p ¥ 1.

The calculation of RW depends on the number of walkersk. When Kk is set as 1, ST for RW is obviously
10951 rpO1 _SReqP. When k is larger than 1, assume that

G°81p_-G,°01p* kG 81p_-G,°81b-Y;  811p
i.e., k is equal to or larger than the average number of the tthneighbors of the query source, and assume that
theeffect of redundant paths can be neglected, and then the calculation for ST of RW can be expressed as

N1 1 01 01 O 1t1
ob obp 0
wpp 0 _ 1 b 0dp_ 1P 12
SR : ob
b k_aSTRw_tb Ya IogaLRpél_ _reqp _
ST for RW is
t1 i

STrwYa loQal_Rpal_SRreqp_kpi%‘oGooalp_‘Gloalp‘ pt 013p
Now, we consider ST for DS. When the hop count h of the query message is smaller than or equal to the
decision threshold n, ST of DS is equal to (10). When h is larger than n, the calculation can be expressed as

p G 1 PP 616199 1 61 2

db db 3
dbp _ C _ 18Pp _O0 _ 1b
PPG1 G ™ing 14
0 (1 0_  _
W0 b
b _ _ 1 Ch db

.0 n_
b -1 1 DS _ .8b-log”® -108 Rreq :

b B _bY¥%  8LRP- b

658 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
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Therefore, ST for DS is

951 Rp&' SRreqb
STps¥anp p" G° 1 G’ ;n_1
1
P 10
_0%.0 p- 1
_ b _
pG1 1 pG1ndl 9815p
1°ab  %bp
SRre
_log1RP1__q
5 ° b

finb on coOsip “e10p™ _ 1
We compare ST ’s for DS and RW with one walker. The improvement ratio is

o1
STrw._ STos G’ b 1
1 : 16
— ol _ 81b-
STaw i G b _p G™ db

In (16), the last term on the right would significantly affect the performance improvement. ST of DS
would be exponen-tially decreased with n, which can be expressed as Od1=nb. Larger p would also affect the
performance, but the effect is slow when compared with n. The extreme case of n is that it is setas TTL, i.e., DS
performs as flooding or MBFS. In this case, ST would be the shortest, whereas it would also generate ahuge
amount of query messages at the same time. The tradeoff between the search performance and the cost should
be taken into consideration. In the following paragraphs, we further analyze the number of query hits and the
number of query messages and further combine these metrics into the query efficiency and search efficiency.

4.2.3 Query Hits 6QHP

The number of query hits highly depends on the coverage, i.e., the humber of total visited nodes.
Assume that the queried resources are uniformly distributed with the replication ratio R in the network, and the
coverage is C. The number of query hits is R_C. The coverage C can be regarded as the summation of the
coverage at each hop. Therefore, we first analyze the coverage C;, at the hth hop. Let Vybe the event that a vertex
is visited at thehthhop. Supposethe probability that the vertex i is visited at the hth hop is PidV,b. When the hop
count h ¥ 1,Cyis the expectation of thevertices that are visited at the first hop. When the hop count h is larger
than 1, the calculation of C,, should preclude the event that the vertex has been visited in the previous hop.
Therefore, the coverage Cy, at the hth hop can be written as

i PoV,b
8 " ; forhv%1;
Ya
‘h nh_ 17
vt 1 5 b
> 1 %Yy Pivh: forh 2
V4l
< 1 _83pP_3 Db _
P Q_ _

whereN is the total number of vertices in the network. Next, we analyze the visiting probability P;6V,p for

flooding, MBFS, RW, and DS, respectively. First, we consider the flooding and MBFS cases. The visiting
probability P;6V,p of flooding or MBFS is

POViP Y- p_ pi Glolb; G'1%h 1 ; forh¥%1;
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1 1- ppi forh 2. 018p

0 b-
wherep; is the probability that vertex i is to be reached by certain edge. Aiello et al. [39] shows that p; can be
written as
m=i*-
pi%Pn%m:il_.

il

a19p

where_ is the power-law exponent, and m is the maximum degree.

When considering RW, we first calculate the probability that a vertex i is the candidate of RW, i.e.,

G
poo °h  forh 1;
PORPY 1 1°p 61 1 ;forh¥ 2 820p

p

o 6_ _
Then, the average number of candidates of RW at hop h is

n

rh1/4Pi6RhD: 021b
iva1
X
Hence, the probability that vertex i is visited at hop h for RW is
h i
PidVnb YPBR.P_ 1 81 1=r,p*; 822p

wherek is the number of walkers.

The calculation of visiting probability P;6V,p for DS depends on the relation between h and n. When h_n,
PidVy,pis given by (18). When h > n, (20), (21), and (22) areused to get P;0Vyp, where k in (22) is set as C,, i.e.,
the coverage at the nth hop. Therefore, the visiting probability P;0Vpof DS is given by

forh ¥
p pi Golb: ‘h 1 1
PV, 81 . pop G'1. for2 h n
3 pv%> _ _ _ _ 3b C, o
R- 1=r
“Pi 1 1 - : forh>n;
>3 p" 8 _ Ei

023p
4.2.4 Query Messages 0QMbp
When considering the flooding and MBFS cases, the query message e, generated at hop h is given by
e p_Gyd1b; forh v 1; 24
Yo _p_G81p _Cy4; forh_2: db

When considering the RW case, the number of query messages for each hop keeps fixed as k, i.e., the number of
walkers. Therefore, the total number of query messages for RW is k_TTL.

The calculation of query messages for DS depends on h and n. The query messages e, generated at hop h for
DS can
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be written as

pG® 1; forh  1;
0 Ya
en % -ci0 &P “h 1 for2_h_n; 825p
ob
Y%<Cn, for h>n:

4.2.5 Query Efficiency 6QEP

The number of query hits 6QHP and the number of query messages 0QMb are the well-known
performance metrics for the evaluations of search algorithms. Generally speak-ing, the objective of search
algorithms is to get the most query hits with the fewest query messages, but these two metrics often conflict
with each other. Therefore, it requires a more objective metric to evaluate the search performance.

Authorized licensed use limited to: Shree MotilalKanhaiyalalFomra Institute. Downloaded on August 12,2010
at 08:33:11 UTC from IEEE Xplore. Restrictions apply.
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659
We adopt the performance metrics proposed in [15], query efficiency 0QEP and search efficiency SEP, which
consider both the search performance and the cost. The similar criterion can also be found in [9]. First, we
calculate QE. In [15], QE is defined as

TTLonn 1
h 1
QE%P "QM 8P R ; d26b

whereQHGShP is the query hits at the hth hop, QM is the total number of query messages generated during the
query, and R is the replication ratio of the queried object. Since a search getting hits in a faster fashion delivers
better users’ experiences and should be gauged as the higher reputation, we modify (26) and show two types of
QE’s. QE;is calculated as (26) shows, and QE,penalizes searchresults coming from far away, i.e.,

™QHh=h 1

QE; % P h¥l o®®  _R : 827b
4.2.6 Search Efficiency 0SEP

The search efficiency 0SEP is proposed as a unified performance metric for search algorithms [15]. A similar
criterion can be found in [9]. While the query efficiency QE does not consider the success rate SR, SE is defined
as

M QHh=hSR

SE Y, Phl/d:lQMé3 D_R , 028p
where QHAhb=h is the query hits in the hth hop weighted by the hop count, QM is the total number of query
messages generated during the query, SR is the probability that the query is successful, i.e., there is at least one
query hit, and R is the replication ratio of the queried object. Thus, the success rate SR is taken into
consideration. Assume that the object is uniformly distributed in the network. Then, the query hit at the hth hop
is equal to the multiplication of the coverage at the hth hop and the replication rate R. Therefore, (28) can be
written as

- — -

TTL
ch R=h 1_81 _RP’ h C,
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Yy
hv%TT
SE¥ 1 L R ; 029p
P hilh
P Y
whereC;, is the coverage at the hth hop, e, is the query messages generated at the hth hop, and R is the
replication ratio. We consider two types of SEs. SE; does not penalize search results coming from far away, i.e.,

TT
L TTL ¢
h 1C, R1 1 R h¥l
“TTL _8_
SEy Yo o Rp’ . 330p
P hilnh
Pl/A
andSE; is calculated as (29) shows.

4.3 Experimental Environment

We construct the experimental environment to evaluate the performance of the knowledge-based DS
algorithm. For the network topology modeling, we model the P2P network as Gnutella to provide a network
context in which peers can perform their intended activities. The measurements in [17]

and [20] have suggested that the topology of Gnutella network has the property of two-segment power-law link
distribution. Thus, we construct a P2P network of 100,000 peers in our simulator, in which the link distribution
follows the reported two-segment power law. We set the first power-law slope as 0.2316 and the second as
1.1373, which are similar to the ones used in [17]. The statistics result of the topology embedded in our
simulator are that the maximum link degree is 632, mean is 11.73, and standard deviation is 17.09. Once the
node (peer) degrees are chosen, we connect these peers randomly and reassure every peer is connected properly
(each peer has at least one link).

For the object distribution of the network, we assume there are 100 distinct objects with replication ratio of R
Y 1 percent; totally, there are 100,000 objects in thenetwork. The distribution of the 100,000 objects over the
network follows the measurement characteristics reported in [21]. In addition, due to the dynamic
environment— peers join and leave dynamically—described in the following section, the total number of
objects available in the network will fluctuate according to the network size (number of online peers), but the
replication ratio will roughly remain constant.

Our dynamic peer behavior modeling largely follows the proposed idea of the peer cycle [18], which includes
joining, querying, idling, leaving, and joining again to form a cycle. The joining and leaving operations of peers
(include idling) are inferred and then modeled by the uptime and session duration distributions measured in [21]
and [22]. These measurement studies show similar results in the peer uptime distribution, where half of the peers
have uptime percentage less than 10 percent and the best 20 percent of peers have 45 percent uptime or more.
We use the log-quadratic distribution suggested in [22] to rebuild the uptime distribution, which is plotted in
Fig. 4. However, for the session duration distribution, those two studies lead to different results. The median of
session time in [22] is about 15 minutes, while it is 60 minutes in [21]. In our modeling, we choose the median
session duration time to be

20 minutes.

By these two rebuilt distributions, we can generate a

probability model to decide when a peer should join or leave the network and how long it should continually be
online. The basic rule to assign peers’ attributes is that peers with higher link degrees are assigned to higher
uptime percentages and longer session durations, and vice versa. With these conditions, we map a 2-hour-long
dynamic join/ leave pattern for peers. On average, there are 10 peers joining or leaving simultaneously. Since
the mean value of uptime distribution is about 18 percent, the resulting average number of online peers is
18,152. Moreover, the maximum number of online nodes is 24,218, while the minimum number is 4,886.

We model the dynamic querying model as Poisson distribution with the idle time _%50 minutes; that is, each
peer will initiate a search every 50 minutes on average. Since there is no direct measurement about the idle time,
we just use an experiential value. The choice of this parameter is insensitive to our search performance
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Fig. 4. SE versus hop count when p is set as 1 and n is changed from 1 to 7. Power-law topology with N ¥4
10;000. When n is set as 2, DS gets the best performance for almost all hop counts.

Fig. 5. The effects of the parameters dn; pb on the SE. Power-law topology with N % 10;000. TTL % 7. The best
SE is obtained when dn; pb is set as (2, 1).

the idle time of 50 minutes, there are thus about six queries or searches processing concurrently in the network
on average. Totally, in this 2-hour simulation, we generate 43,632 search queries. Furthermore, for the query
distribu-tion of search objects, we model it as zipf distribution with parameter a%0:82, similar to the ones used
in [17] and [27]. Finally, our simulator’s central clock is triggered per second, which measures a hop for
messaging passing and serves as a basic time unit for all peer operations.

V. NUMERICAL RESULTS AND DISCUSSION
In this section, we show the numerical results of performance evaluation. We show the effectiveness of
our DS algorithm and the effects of parameters n and p in Section 5.1. Then, the performance evaluation results
of the knowledge-based DS algorithm are shown in Section 5.2.

5.1 Performance of Dynamic Search
5.1.1 Effects of Parameters n and p of DS

First, N is set as 10,000. Power-law topology is adopted and the exponent _ is set as 2.1, which is
analog to the real-world situation [10]. Replication ratio R is set as 0.01 in this case. Fig. 4 illustrates how the
decision threshold n of DS would affect the system performance. Due to space constraints, we only show the
result when p is set as 1. The case n¥%1 is analog to RW with K equal to the number of first neighbors, which is
roughly 3.55 in this case. The case n¥7 is equal to the flooding. As this figure shows, DS with n%7 sends the
query messages aggressively in the first three hops and gets good SE. However, the perfor-mance degrades
rapidly as the hop increases. This is because the cost grows exponentially with the path length between the
query source and the target. On the contrary, SE of RW is better than that of the flooding when the hop is5 to 7.
When n is set as 2, DS gets the best SE for almost all hop counts. This figure shows that a good choice of
parameter n can help DS to take advantage of different contexts under which each search algorithm performs
well.In order to obtain the best dn; pb combination, we illustrate the &n; p; SEP results in Fig. 5. Here, N is set
as 10,000, R is setas 0.01, and TTL is set as 7. Under this

context, when p is large (0.7-1), setting n¥%2 would get the best SE. Moreover, the best n value
increases as p decreases, as Fig. 6 shows. For example, when p is set as 0.2, the best n would be 6 or 7. This is
because when p is small, n should be increased to expand the coverage. On the contrary, n should be decreased
to limit the growth of query messages when p is large. Therefore, the parameters n and p provide the tradeoff
between the search performance and the cost. It shows the best SE is obtained when dn; pb is set as (2, 1). Due
to space constraints, the best parameters for other contexts are skipped in this paper, which can be found through
similar operation.
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5.1.2 Search Time

We show the numerical results of ST in Fig. 7. In this case, N is set as 10,000, R is set as 0.01, and
TTL is set as 7.Similar results can be obtained when the parameters are set as other values. The walkers K for
RW are set as 1 and 32. The decision thresholds n are set as 2, 3, and 7, and p is set as 1. TTL is set as 7 in this
case, thus DS with n¥47 is equal to flooding. From Fig. 7, DS with large n always gets the short ST because it
always covers more vertices. On the contrary, RW with K¥%1 always gets the longest ST since its coverage is
only incremental by one at each hop. When K is set as 32, its coverage is enlarged and ST can beimproved.
However, DS still performs better than RW with 32 walkers even when n is set as only 2. Note that when n is set
as 3, DS performs as well as that with n¥%47, i.e., the

Transmission Probability p

0.2

0 1 2 3 4
Decision Threshold n

Fig. 6. The best dn; pp combination when N is set as 10,000, R is set as

0.01,and TTL isset as 7.
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Fig. 8. Search efficiency for different number of nodes N in the network. This figure shows the scalability of the
DS algorithm.

flooding, while does not generate as many query messages. In summary, DS with n¥2 and p¥%1 would get the
best SE and significantly improve ST in this case. Whileincreasing n to 3, although SE is a little degraded, the
shortest ST is obtained.

5.1.3 Comparison with Other Advanced Search Algorithms

We also compare the performance of DS with that of other advanced search algorithms including
Hybrid Search [12] and Expanding Ring [17]. The number of nodes N is set as 10,000. Power-law exponent _is
set as 2.1. Replication ratio R is set as 0.01 in this case. Fig. 4 shows SE’s of these searchalgorithms. SE of
Hybrid Search is analog to that of RW. They both increase slowly with hop counts. SE of Expanding Ring is
analog to but a little worse than that of the flooding. This is because Expanding Ring would revisit the nodes it
has already visited before. It would thus generate redundant messages. SE of DS is better than that of Hybrid
Search and Expanding Ring for all hop counts.
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Fig. 7 shows ST ’s of these search algorithms. The operation of Hybrid Search is analog to that of RW with K %4
G%,81b. Based on our simulation parameters, G%31p isroughly 16. Thus, ST of Hybrid Search is better than that
of RW(1) but worse than that of RW(32). ST of Expanding Ring is almost one hop worse than that of the
flooding. When the flooding reaches the second neighbors at the second hop, Expanding Ring just revisits the
first neighbors and there is no increment in coverage. For SR requirement smaller than 0.7, ST of DS(2) is
shorter than that of Expanding Ring, while ST of DS(2) would be longer than that of Expanding Ring for SR
requirement larger than 0.7.

5.1.4 Scalability

In order to validate the scalability of our DS algorithm, we show the search efficiency for different
number of nodes in Fig. 8. Nodes N are set as 10,000, 50,000, 100,000, and 500,000, respectively. The
replication ratio R is set as 0.01, and TTL is set as 7. This figure shows that our DS algorithm always performs
better than flooding and RW in spite of the number of nodes.

5.1.5 Performance under Various Network Topologies and Replication Ratios

Tables 2 and 3 show the search performance under power-law random graphs and bimodal topologies,
respectively. The replication ratio R is set as 0.01 percent, 0.1 percent, and 1 percent, respectively. The
performance metrics including the success rate dSRb, search time dSTP, number of query hits 3QHP, number of
query messages 0QMPp, query efficiency 6QEP, and search efficiency 0SEP are listed in these tables. Two types
of QE’s and SE’s are shown. Ones without the penalty that the search results come from far away (QE; and
SE,), and others with the penalty (QE, and SE;), as mentioned in Section 4.2. When considering QE;and QE,,
RW performs the best because it covers the fewest redundant nodes. Although RW generates the fewest query
messages, its SR, ST ,QH, and the resulting SE do not perform well. In most cases, DS can perform closely to
the flooding search when considering SR and ST without generating as many query messages as flooding does.
In summary, DS obtains satisfactory performances in spite of the number of nodes, the replication ratio, and the
network topologies. On average, it performs about 25 times better than flooding and 58 times better than RW in
power-law graphs, and about 186 times better than flooding and 120 times better than RW in bimodal
topologies.

5.2 Performance of Knowledge-Based Dynamic Search

In this section, we evaluate the search performance in a network where every node is capable of
building knowl-edge with respect to the target through some learning mechanisms. Any forwarding mechanism
can improve the search performance by leveraging over the knowledge. For example, APS [27] uses the
adaptive probability learning mechanism and adopts RW as the forwarding mechanism. Besides, other
forwarding mechanisms, e.g., MBFS or our dynamic forwarding, are also applicable to this learning mechanism.
In order to evaluate the search performance, we adopt APS learning mechanism to build the knowledge. APS
learning builds a probability table for each neighbor and each object. When a query for certain object
forwarding to a certain neighbor succeeds, the relative probability (or weight) of the entry for that neighbor and
that object is Authorized licensed use limited to: Shree MotilalKanhaiyalalFomra Institute. Downloaded on
August 12,2010 at 08:33:11 UTC from IEEE Xplore. Restrictions apply. Authorized licensed use limited to:
Shree MotilalKanhaiyalalFomra Institute. Downloaded on August 12,2010 at 08:33:11 UTC from IEEE Xplore.
Restrictions apply.
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TABLE 2a
Performance of Flooding in Power-Law Graphs

Replication Ratio (R) = 0.01%

S(E: Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (ST) QH) Qv (QE) (QE) (SE1) (SE2)
10k 0.99 4.13 1.00 113k 0.088 1.25 0.087 1.24
50k 0.99 3.57 5.00 997k 0.050 1.13 0.050 1.12
100k 1.00 3.38 10.00 2561k 0.039 0.88 0.039 0.88
500k 1.00 3.03 50.00 23M 0.022 0.49 0.022 0.49
Size Replication Ratio (R) = 0.1%
™) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (ST) (QH) QM) (QE1) (QE2) (SE1) (SE2)
10k 1.00 3.30 9.99 113k 0.088 1.96 0.088 1.96
50k 1.00 2.88 50.00 997k 0.050 1.13 0.050 113
100k 1.00 2.74 100.00 2560k 0.039 0.88 0.039 0.88
500k 1.00 248 500.00 23M 0.022 0.49 0.022 0.49
Gisa Replication Ratio (R) =1%
™) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (ST) QH) QM) (QE1) (QE2) (SE1) (SE2)
10k 1.00 247 99.94 113k 0.088 1.96 0.088 1.96
50k 1.00 220 500.00 997k 0.050 113 0.050 1.13
100k 1.00 2.10 1K 2561k 0.039 0.88 0.039 0.88
500k 1.00 1.93 5K 23M 0.022 0.49 0.022 0.49
TABLE 2b
Performance of RW in Power-Law Graphs
B Replication Ratio (R) = 0.01%
™) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (1) (QH) Q) (QE1) (QE2) (SE1) (SE2)
10k 0.0025 23k 0.0025 24.85 1.00 36.00 0.0025 0.09
50k 0.0028 23k 0.0028 28.18 1.00 35.71 0.0028 0.10
100k 0.0030 23k 0.0030 29.54 1.00 36.67 0.0030 0.11
500k 0.0032 23k 0.0033 3253 1.00 37.50 0.0032 0.12
Size Replication Ratio (R) = 0.1%
™) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) 51 (QH) QM) (QEy) (QE2) (SE1) (SE2)
10k 0.025 2k 0.025 24.85 1.00 36.40 0.025 0.91
50k 0.028 2k 0.028 28.18 1.00 36.79 0.028 1.03
100k 0.029 2k 0.030 29.54 1.00 37.24 0.029 1.08
500k 0.032 2k 0.033 32.53 1.00 37.19 0.032 1.19
S Replication Ratio (R) = 1%
™ Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
GR) 1) (QH) Q) (QEy) (QE>) (SE1) (SE2)
10k 0.22 229.11 0.25 24.85 1.00 37.23 0.22 8.19
50k 0.25 229.11 0.28 28.18 1.00 36.56 0.25 9.14
100k 0.26 229.11 0.30 29.54 1.00 36.62 0.26 9.52
500k 0.28 229.11 0.33 32.53 1.00 36.89 0.28 10.33
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increased. Otherwise, it is decreased. Since the flooding forwards messages to all of the neighbors, the learning
mechanism is useless for it, and so we do not evaluate flooding here. For the MBFS with APS learning, the
transmission probability p is set as 0.2, which is chosen to keep the same amount of query messages as the other
search algorithms. The initial walker for APS is 10, the same as [27].The experimental results for different
search algorithms with the knowledge building mechanism are shown in Fig. 9. With APS knowledge building
mechanism, all search algorithms perform much better than they do without Authorized licensed use limited to:
Shree MotilalKanhaiyalalFomra Institute. Downloaded on August 12,2010 at 08:33:11 UTC from IEEE Xplore.
Restrictions apply.
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TABLE 2c
Performance of DS in Power-Law Graphs
- Replication Ratio (R) = 0.01%
Size
(ll\l; Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency Search Efficiency
(SR) (E1) (QH) Q) (QE)) (QE2) (SE1) (SE2)
10k 0.75 4.46 1.00 15k 0.67 17.39 0.50 13.04
50k 0.99 3.57 5.00 91k 0.55 17.16 0.50 16.99
100k 1.00 3.38 10.00 200k 0.5 16.77 0.50 16.77
500k 1.00 3.03 50.00 1240k 0.40 16.16 0.40 16.16
. Replication Ratio (R) = 0.1%
Size
~N) Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency Search Efficiency
(SR) (sT) (QH) QM) (QE1) (QE2) (SEx) (SE2)
10k 0.89 4.40 221 2k 1.00 22.26 0.89 19.81
50k 1.00 2.88 7.79 8k 1.00 22.01 1.00 22,01
100k 1.00 2.74 13.49 14k 1.00 21.96 1.00 21.96
500k 1.00 2.48 48.93 49k 1.00 21.88 1.00 21.88
si Replication Ratio (R) = 1%
nze
&0 Success rate Search Time Query Hits Query Messages | Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (ST Qi) QM) (QEn (QE2) (SE1) (SE2)
10k 0.92 4.92 2.44 244.48 1.00 27.42 0.92 25.23
50k 0.99 2.96 4.85 485.15 1.00 27.21 0.99 26.94
100k 1.00 2.46 6.52 652.03 1.00 26.98 1.00 26.98
500k 1.00 1.93 12.96 1296.59 1.00 26.81 1.00 26.81
BLE 3a
Performance of Flooding in Bimodal Topologies
Replication Ratio (R) = 0.01%
Size
~) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (ST (QH) Q) (QE) (QE2) (SE1) (SE2)
10k 0.63 2.69 1.00 2497k 0.0040 0.14 0.0025 0.087
50k 0.99 2.69 5.00 12m 0.0042 0.13 0.0042 0.13
100k 1.00 2.69 10.00 24m 0.0042 0.12 0.0042 0.12
500k 1.00 2.69 50.00 125m 0.0040 0.11 0.0040 0.11
Replication Ratio (R) = 0.1%
Size
™) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
R) (1Y) (QH) Q™) (QEy) (QE2) (SE1) (SE2)
10k 1.00 2.28 10.00 2497k 0.0040 0.14 0.0040 0.14
50k 1.00 2.28 50.00 12m 0.0042 0.13 0.0042 0.13
100k 1.00 2.28 100.00 24m 0.0042 0.12 0.0042 0.12
500k 1.00 228 500.00 125m 0.0040 0.11 0.0040 0.11
X Replication Ratio (R) = 1%
Size
™) Success rate Search Time Query Hits Query Messages Query Efficiency | Query Efficiency | Search Efficiency | Search Efficiency
(SR) (61 (QH) Q) (QEy) (QE2) (SE1) (SE2)
10k 1.00 1.86 100.00 2497k 0.0040 0.14 0.0040 0.14
50k 1.00 1.86 500.00 12m 0.0042 0.13 0.0042 0.13
100k 1.00 1.86 1000.00 24m 0.0042 0.12 0.0042 0.12
500k 1.00 1.86 5000.00 125m 0.0040 0.11 0.0040 0.11
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knowledge. Comparing these three search algorithms, for the case at h%7, SE of DS is 24 percent better than
that of RW, and 31 times better than that of MBFS. The outstanding performance results from the good tradeoff

between the search performance and the cost.

Downloaded on August 12,2010 at 08:33:11 UTC from IEEE Xplore. Restrictions apply.

VI.

CONCLUSION

In this paper, we have proposed the DS algorithm, which is a generalization of the flooding, MBFS,
and RW. DS overcomes the disadvantages of flooding and RW, and takes advantage of various contexts under
which each search algorithm Authorized licensed use limited to: Shree MotilalKanhaiyalalFomra Institute.
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TABLE 3b
Performance of RW in Bimodal Topologies

- Replication Ratio (R) = 0.01 %
2‘:; Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency Search Efficiency
(SR) (ST) (QH) (Qm) (QE1) (QE2) (SE1) (SE2)
10k 0.0014 23k 0.0014 13.99 1.00 37.14 0.0014 0.052
50k 0.0014 23k 0.0014 13.99 1.00 37.14 0.0014 0.052
100k 0.0014 23k 0.0014 13.99 1.00 37.14 0.0014 0.052
500k 0.0014 23k 0.0014 13.99 1.00 37.14 0.0014 0.052
Size Replication Ratio (R) = 0.1%
™~ Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency Search Efficiency
(SR) (ST) (QH) QM) (QE1) (QEz) (SE1) (SEx2)
10k 0.014 2k 0.014 13.99 1.00 36.43 0.0014 0.51
50k 0.014 2k 0.014 13.99 1.00 36.43 0.0014 0.51
100k 0.014 2k 0.014 13.99 1.00 36.43 0.0014 0.51
500k 0.014 2k 0.014 13.99 1.00 36.43 0.0014 0.51
Sa Replication Ratio (R) = 1%
™) Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency Search Efficiency
(SR) (ST) (QH) (@m) (QE1 (QE2) (SE1) (SE2)
10k 0.13 229.11 0.14 13.99 1.00 37.38 0.13 4.86
50k 0.13 229.11 0.14 13.99 1.00 37.38 0.13 4.86
100k 0.13 229.11 0.14 13.99 1.00 37.38 0.13 4.86
500k 0.13 229.11 0.14 13.99 1.00 37.38 0.13 4.86
TABLE 3c
Performance of DS in Bimodal Topologies
Replication Ratio (R) = 0.01%
Size
- Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency Search Efficiency
(SR) (ST) (QH) QM) (QE1 (QE2) (SE1) (SE2)
10k 0.26 2.69 0.30 2964.41 1.00 26.15 0.26 6.80
50k 1.00 2.69 5.00 306k 0.16 16.28 0.16 16.28
100k 1.00 2.69 10.00 409k 0.24 19.02 0.24 19.02
500k 1.00 2.69 50.00 566k 0.88 21.33 0.88 21.33
Size Replication Ratio (R) = 0.1%
™~ Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency Search Efficiency
(SR) (ST) (QH) QM) (QE1) (QE2) (SE1) (SE2)
10k 0.95 2.28 2.96 2964.41 1.00 26.48 0.95 25.16
50k 0.95 2.28 2.99 2989.68 1.00 26.58 0.95 25.25
100k 0.95 2.28 2.99 2992.84 1.00 26.59 0.95 25.26
500k 0.95 2.28 3.00 2995.37 1.00 26.60 0.95 25.27
—— Replication Ratio (R) = 1%
™~ Success rate Search Time Query Hits Query Messages Query Efficiency Query Efficiency Search Efficiency Search Efficiency
(SR) (sT) (QH) (Q@m) (QE1) (QE2) (SE1) (SE2)
10k 1.00 1.86 29.58 2964.41 1.00 26.54 1.00 26.54
50k 1.00 1.86 29.88 2989.68 1.00 26.59 1.00 26.59
100k 1.00 1.86 29.92 2992.84 1.00 26.59 1.00 26.59
500k 1.00 1.86 29.95 2995.37 1.00 26.60 1.00 26.60

performs well. It resembles flooding or MBFS for the short-term search and RW for the long-term search.

We analyze the performance of DS based on some metrics including the success rate, search time, number of
query hits, number of query messages, query efficiency, and search efficiency. Numerical results show that
proper setting of the
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parameters of DS can obtain short search time and provide a good tradeoff between the search performance and
cost. Under different contexts, DS always performs well. When combined with knowledge-based search
algorithms, its search performances could be further improved. Authorized licensed use limited to: Shree
MotilalKanhaiyalalFomra Institute. Downloaded on August 12,2010 at 08:33:11 UTC from IEEE Xplore.
Restrictions apply.

LIN ET AL.: DYNAMIC SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS

665

300

250

g

Search Efficiency (%)

4
Hop

Fig. 9. Performance comparison when combined with the knowledge-based search mechanisms. DS always

performs the best.
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