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I. INTRODUCTION 
 Nonlinear methods in signal and image processing have become increasingly popular over the past thirty 

years. There are two general families of nonlinear filters: the homomorphic and polynomial filters, and the order 

statisticand morphological filters [1]. Homomorphic filters were developed during the 1970's and obey a 

generalization of the superposition principle [2]. The polynomial filters are based on traditional nonlinear system 

theory and use Volterra series. Analysis and design of homomorphic and polynomial filters resemble traditional 

methods used for linear systems and filters in many ways. The order statistic and morphological filters, on the other 

hand, cannot be analyzed efficiently using generalizations of linear techniques. The median filter is an example of 

an order statistic filter, and is probably the oldest [3, 4] and most widely used order statistic filter. Morphological 

filters are based on a form of set algebra known as mathematical morphology. Most morphological filters use 
extreme order statistics (minimum and maximum values) within a filter window, so they are closely related to order 

statistic filters [5, 6].While homomorphic and polynomial filters are designed and analyzed by the techniques used 

to define them, order statistic filters are often chosen by more heuristic methods. As a result, the behavior of the 

median filter and other related filters was poorly understood for many years. In the early 1980's, important results 
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 on the statistical behavior of the median filter were presented [7], and a new technique was developed that 

defined the class of signals invariant to median filtering, the root signals [8, 9]. Morphological filters are derived 

from a more rigorous mathematical background [10-12], which provides an excellent basis for design but few tools 

for analysis. Statistical and deterministic analyses for the basic morphological filters were not published until 1987 

[5, 6, 13]. The understanding of the filters’ behavior achieved by these analyses is not complete, however, so 

further study may help determine when morphological filters are best applied. This dissertation investigates the use 

of morphology-based nonlinear filters to enhance biomedical images. Specifically, new filters based on 
mathematical morphology are developed, analyzed, and applied to a variety of medical images. The behavior of the 

standard morphological filters is undesirable for certain applications, and the new filters are designed to overcome 

these weaknesses. Some new analysis techniques are introduced, including a method to quantify the response of 

filters to two-dimensional features. These new analysis methods and the basic statistical and deterministic analyses 

are used to compare the new filters with the standard filters. Finally, the new nonlinear filters are used to enhance 

magnetic resonance, thermographic, and ultrasound images and their performance is compared to established 

filtering techniques for each of the imaging modalities. 

 

II. ORGANIZATION 
 This dissertation begins with a review of mathematical morphology, including the statistical and 

deterministic properties of the morphological filters. These properties point out weaknesses (specifically, a bias 

problem) in the behavior of the standard morphological filters that motivate the development of new filters. Next, 

new filters that address the bias problem of the standard filters are introduced. Linear combinations of 

morphological operators are one of the new types of filters. This work develops the deterministic and statistical 4 

proper ies of these filters and illustrates the potential advantages of these filters over the standard morphological 

filters. Another new type of filter introduced in this work is the value-andcriterion filter. This filter structure uses 

the shape-based organization of morphology, but expands the operations used for the filtering beyond just the 

maximum and minimum operators. Thus, any linear or nonlinear function can be used to determine the output 

value from values in a window, and to determine which window to use to get the output value. A promising 

application of this new structure is for designing filters that sharpen edges and smooth noise simultaneously. One 
of these new filters is the ―Mean of Least Variance‖ filter, or MLV filter, which is a significant improvement over 

previously defined edgepreserving smoothing filters. The deterministic and statistical properties of the MLV filter 

are also investigated to contrast its behavior with other morphologybased filters. Since the usual statistical and 

deterministic analyses provide only an incomplete understanding of the behavior of nonlinear filters, new analysis 

methods are introduced here to gain further insight into the response of the filters.A technique to quantify the 

response of filters to periodic signals of various frequencies is outlined. This method is similar to Fourier analysis 

for linear filters, but is much more limited in scope because of the nonlinear nature of the filters examined. 

Nonetheless, this analysis gives valuable clues about the response of nonlinear filters to rapidly fluctuating signals. 

Another important property of many nonlinear filters is their resistance to outlying values and impulsive noise. The 

―breakdown point‖ is a measure of the robustness of filters  in the presence of outliers. This method is another way 

to help explain differences among filters. The last analysis method developed in this dissertation furthers the 

understanding of the behavior of filters at two-dimensional structures. This technique, called ―corner response 
analysis,‖ quantifies the percentage of binary corners of various angles that is preserved by a filter. By plotting this 

information in polar format, the change in the response of a filter to corners of various angles is easily visualized. 

This method is a major improvement over previous analyses that focused on general characteristics like noise 

reduction or one-dimensional characteristics like edge preservation. The response of the filter to different rotations 

of the same feature is also explored using corner response analysis, indicating whether a filter acts similarly to 

different rotations of 2-D objects. The final portion of this work illustrates the use of the new nonlinear filters in 

biomedical image processing applications. The results for the various filters yield important information for 

selecting the proper filter for a given application. Among the considerations for selecting a filter are the signal and 

noise characteristics of the specific imaging modality and the type of information that is to be extracted from the 

data. The imaging modalities considered (thermography, magnetic resonance, and ultrasound) have a variety of 

different characteristics that call for different filters. The theoretical analyses in the earlier sections provide a solid 
basis for selecting appropriate filters for each modality. 

 

 

III. MATHEMATICAL MORPHOLOGY 
 Mathematical morphology is a set algebra used to process and analyze data based on geometric shapes. 

The theory of mathematical morphology was introduced by Matheron [10] in 1974 and refined by Serra [11, 12] in 

the 1980’s. The basic morphological operations are erosion and dilation. For binary signals, erosion is a Minkowski 

set subtraction (an intersection of set translations), and dilation is a Minkowski set addition (a union of set 

translations). These operators were extended to operate on non-binary signals by Serra [11] and others [5, 15, 16]. 
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 There are two main types of morphological filters [5]: set processing and function processing filters. Set 

processing filters accept binary input signals and give binary output signals, while function processing filters accept 

binary or nonbinary functions as input and yield non-binary functions as output. The interpretation of binary 

signals as sets and non-binary signals as functions is straightforward; more details are given in [5]. 

 

3.1.Basic Morphological Operators 

Set Processing Operations. 
 Let X denote an m-dimensional set and N denote a compact k-dimensional Set (k <=m), and let y denote a 

point in k and z a point in m. The set X is a binary signal or image to be filtered, and the set N is called the 
structuring element of the morphological filter. Define the symmetric set Ñ = {-z: z є N}, which is a reflection of N 

about the origin. The translation of a set to a point z is denoted by a subscript; for example, the set N translated to 

the point z is Nz. The set processing morphological erosion and dilation are defined by: 

  (1) 

(2) 

The symbols  and denote Minkowski subtraction and Minkowski addition, respectively [11, 12]. The 
erosion of a set X is then the set of points to which the structuring element N may be translated while remaining 

entirely within the original set X. The dilation of X is the set of points to which N may be translated and still 

intersect X with at least one point. Examples of erosion and dilation of some simple discrete sets are shown in 

Figure 1 below. Clearly, erosion shrinks a set while dilation expands a set. 

 
Figure 1. (a) Erosion example. (b) Dilation example. (Adapted from [5].) 

Squares  denote origin of the plane; circles denote other points in the set. 
 

In most applications of mathematical morphology, the structuring elements are symmetric about the origin, so that 

N = Ñ. When this is the case, there is no distinction between erosion and Minkowski subtraction nor between 

dilation and Minkowski addition. Erosion and dilation also are duals of each other with respect to set 

complementation. If a superscript c denotes set 

complementation, then    
 

3.2.Function Processing Operations. 

 Since most signal and image processing applications do not deal with binary data, mathematical 

morphology must extend to non-binary signals (functions) to be widely useful. This extension is performed by 

representing a function as an ordered set of binary signals [5, 11]. The cross section of a function at a particular 

level is a binary set, and the set of all such cross sections forms a complete representation of the function. This 

process of reducing a function to a set of binary signals is called threshold decomposition. The only restriction on 

threshold decomposition is that the function must be upper semicontinuous, which means that each cross section of 

the function must be a closed set. This is not a problem in most applications because all sampled functions are 

upper semicontinuous [5]. Sternberg [15, 16] used another technique to extend morphology to functions, but the 
resulting function processing filters are identical to those derived from threshold decomposition. Threshold 

decomposition is illustrated in Figure 2, which shows three cross sections of a one-dimensional function f(x). Given 

all the cross sections X(f, t) of a function f, the original signal f(x) may be uniquely reconstructed by simply 

―stacking‖ the cross sections. The value of the original signal at a location x is equal to the highest value of t for 

which the location x is included in the set X(f, t). For a quantized signal, there are a finite number of levels (t) 

where the cross sections of the signal are taken. 

 

 
Figure 2. Example of threshold decomposition of a function into cross sections.(Adapted from [5].) 
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 A set processing filter f(X) is said to be ―increasing‖ [5] if for any two sets A and B where A B, the 

filtered sets maintain the same set relationship; that is, f(A)  f(B). This property is also called the ―stacking 
property‖ [17]. A discrete, binary set processing filter possesses the stacking property if and only if its output can 

be expressed as a Boolean function that does not contain the complement of any of the input variables [17]. Such 

expressions are called positive Boolean functions. Set processing filters that are increasing (possess the stacking 

property) may be converted to function processing filters by performing the set processing operations on the 

individual cross sections of a signal; the filtered signal is found by stacking the filtered cross sections in the manner 

described previously. This process of converting the cross sections back into a function is a supremum operation. 

Examples of filters that are increasing and therefore may operate on a threshold decomposition of a signal are all 
order statistic filters [18, 19], including the median filter, and the morphological filters. Function processing filters 

that operate in this manner on the cross sections of a function are called stack filters [6, 17, 20]. Note that not all 

function processing filters obey the stacking property; those that do are part of a subset of function processing 

filters called function and set processing (FSP) filters [5, 13]. FSP filters are useful because they can accept either 

sets or functions as input, and give the same type of output as the input they receive. The set processing 

morphological filters may be converted to a function processing operation by this stacking property. The resulting 

grayscale morphological filters are a subset of the stack filters. All stack filters are FSP filters, and so the 

morphological filters that use set structuring elements are FSP filters. The resulting expressions for the FSP 

morphological filters are [5, 13]: 

  

(3) 

(4) 
where f(y) denotes an m-dimensional upper semicontinuous function, N denotes a compact k-dimensional set (k 

<=m), and y and z denote points in k and m, respectively. The infimum (inf) and supremum (sup) operations 
reduce to simple minimum and maximum operations, respectively, when acting on discrete signals.The structuring 

element of a morphological filter does not have to be a set. Like the signal the filter operates on, the structuring 

element may be a function. In this case, the output of the morphological filter is always a function, so such filters 

are not FSP, but are function processing. Instead of the structuring element set N, the structuring element is a k 

dimensional upper semicontinuous function g(z) that is defined over a compact region of support, S. As for the set 
structuring element case, the erosion and dilation are defined as the Minkowski subtraction and addition of the 

signal with the reflection of the structuring element about the origin. Let g˜(z) = g(-z) denote this reflection. The 

morphological erosion and dilation of a function by a function are given by: 

(5) 

(6) 
Note that if the function structuring element g(z) is zero over its entire region of support S, then the above 

expressions are equivalent to the FSP expressions with structuring element N = S. Set structuring elements are far 

more widely used than function structuring elements in applications of mathematical morphology. In theory, 

however, function structuring elements are a significant addition to morphological filtering because they are able to 

process signals and image based on a specific intensity profile over a certain shape. Set structuring elements 

assume a flat intensity profile over their shapes. 

 

3.3.Compound Morphological Operators 

 Erosion and dilation are complementary operations, one shrinking the size of objects in an image and the 
other expanding them. However, erosion and dilation are not inverses of each other. Some objects are completely 

removed by erosion, and therefore cannot be restored by dilation. Likewise, dilation often joins nearby objects 

which erosion cannot then separate. The compound morphological operations formed by performing the 

complementary operators in sequence are the morphological operations ―opening‖ and ―closing.‖ Opening is 

defined as erosion followed by dilation, while closing is dilation followed by erosion. The structuring element used 

for the second operation is the reflection about the origin of the structuring element used for the first operation. The 

specific expressions for opening (denoted by a subscript) and closing (denoted by a superscript) for a set structuring 

element N acting on a function f(z) are: 

 

(7) 

(8) 
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 The structuring element rotation between the erosion and dilation creates an ―effective‖ structuring 

element for opening and closing that is symmetric about the origin, even if the original structuring element is 

asymmetric. This is illustrated in Figure 3 below. In most applications, this rotation has no practical effect since the 

original structuring element is usually symmetric. 

 

 
Figure 3. Illustration of an ―effective‖ structuring element of opening and closing formed by rotation between 

successive erosions and dilations. Squares  denote the origin of the plane; circles  denote other points 
in the set. The opening and closing operations are also complementary, and when applied in sequence, they form 

the doubly compound morphological operators open-close (OC) and close-open (CO): 

(9) 

(10) 

 

IV. RESULT 
 Figures 4–7 below illustrate the operation of the simple and compound morphological operators on a one 

dimensional signal (frequency modulated in this example). For finite-length signals, there is a problem defining the 

output of filters near the ends of the signal; in the following examples, the output near the ends is found 

by―padding‖ the signal at either end with as many repetitions of the first or last value in the signal as necessary to 

define the output. Figure .4 demonstrates the effect of erosion and opening. Notice especially how opening 

preserves―negative‖ features of the signal, but cuts off positive impulses narrower than the structuring element. 

Figure .5 compares dilation and closing of the same signal; the effect is exactly the opposite. Closing preserves 

positive features and cuts off negative impulses. The effects of cascaded operators, open-closing (OC) and close-
opening (CO), are shown in Figures 6 and 7 respectively. Notice that as the signal frequency increases, the close-

opening tends toward flat regions with high values, whereas the open-closing yields flat regions with low values. 

 
Figure 4. Effect of erosion and opening on a 1-D frequency-modulated signal. 

 

 
Figure 5. Effect of dilation and closing on a 1-D frequency-modulated signal. 
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                              Figure 6. Effect of open-closing (OC) on a 1-D frequency-modulated signal. 

 
Figure 7. Effect of close-opening (CO) on a 1-D frequency-modulated signal. 

 

Figures 8–14 below illustrate the effect of the morphological filters in two dimensions with a square structuring 

element. Figure 8 is the original 110 x 110 pixel binary image of several characters. In the applications given in 

Chapter 5, image features are considered to have high gray level values and background to have low values; this 

means that dilation expands image features and erosion shrinks them. However, in the binary examples given 

below, the characters (features) are black, and so black will be considered to take on the value 1 and white the 
value 0. This is inverted from the convention of 0 for black and maximum range (often 255) for white which will 

be used later in this work.  Figures 9 and 10 show the erosion and dilation, respectively, of the original image in 

Figure 2.8 using a 5 x 5 square structuring element. Note that the thin parts of the characters disappear in the 

eroded image, while nearby portions of adjacent characters are merged in the dilated image. The opening and 

closing of the image with a 5 x 5 structuring element are illustrated in Figures 11 and 12, respectively. The 

opening, which expands the characters back from what was left after erosion, still shows many gaps where thin 

features were removed. The closing, however, preserves the thin features of the characters, but partially closes 

some of the enclosed white areas and leaves many of the characters touching. The doubly compound operators OC 

and CO, shown in Figures 13 and 14 respectively, are quite similar in appearance. There are only a few small 

differences between the OC and CO results, all of which are related to sharp corners in the original image (such as 

the angles in the ―4‖). One important trait to notice in Figures 2.9–2.14 is the effect of the structuring element 
shape on the filtered images. In every case, the square shape of the structuring element has a noticeable effect, 

preserving straight edges and 90° corners and converting other features to a ―more square‖ appearance. The fact 

that the structuring element shape greatly influences the output of the filter is one of the most important features of 

mathematical morphology. 

 
Figure .8. Original binary image. 

 

 
Figure 9. Image after erosion                                 Figure 10. Image after dilation. 
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Figure 11. Image after opening.                                          Figure 12. Image after closing. 

 
Figure 13. Image after OC.                                                        Figure 14. Image after CO. 

 

V. CONCLUSION 
 This topic  has demonstrated the utility of nonlinear filters for the enhancement of medical images, 

including thermography, MRI, and ultrasound. Morphology-based filters allow processing by shape and size, 

which can be particularly useful for feature extraction and segmentation problems in medical image analysis. For 

MRI, the desired processing usually includes contrast enhancement and noise reduction. These enhancements 

simplify the segmentation process on MR images. The morphology-based MLV filter, which is one of the new 

filters in the value-and-criterion structure introduced in topic 3, does an excellent job of sharpening edges and 

reducing noise in MR images. The MLV filter yields excellent results in only one pass, as opposed to anisotropic  
diffusion, which requires many iterations. The MLV filter is also computationally more efficient than similar edge-

preserving smoothing filters. This work extends the theory of nonlinear image processing by introducing new filter 

structures and analysis methods, and demonstrates the utility of these new techniques on a variety of medical 

images. The filters are based on generalizations of mathematical morphology, which is itself a relatively recent 

development in image processing. One of these generalizations is the class of linear combinations of morphological 

operators. This filter class includes the previously defined midrange and pseudomedian filters and leads to the 

definition of the LOCO filter. The deterministic properties of the linear combinations are similar to those of the 

constituent morphological filters; however, the linear combinations are statistically unbiased, unlike the 

conventional morphological operators. This is important in applications like thermography, where the LOCO filter 

allows shape-based filtering as in standard morphology without introducing a statistical bias. The other new class 

of filters introduced here is the value-and-criterion filter structure. This structure is based on morphological 

opening and closing, but allows the use of both linear and nonlinear operators within the window structure. One 
useful filter designed with this structure is the Mean of Least Variance (MLV) filter, which takes the mean of the 

window with the smallest variance within a set of windows defined by the morphological structure. This filter 

reduces noise and enhances edges in images. Its statistical and deterministic properties resemble those of the 

averaging filter more than the morphological filters, with several important differences. The MLV filter is valuable 

in applications like MRI, where noise smoothing and contrast enhancement are the primary goals. 
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