
International Journal of Computational Engineering Research||Vol, 03||Issue, 5||

www.ijceronline.com ||May ||2013|| Page 78

A Firm Retrieval of Software Reusable Component Based On

Component Classification

Gowtham Gajala
1,

 MV Phanindra
2

1, 2 Assistant Professor, Dept. of IT, Kakatiya Institute of Technology & Science, Warangal

I. INTRODUCTION

 Software is rarely built completely from scratch. To a great extent, existing software documents (source

code, design documents, etc.) are copied and adapted to fit new requirements. Yet we are far from the goal of

making reuse the standard approach to software development.Software reuse is the process of creating software

systems from existing software rather than building them from scratch. Software reuse is still an emerging

discipline. It appears in many different forms from ad-hoc reuse to systematic reuse, and from white-box reuse

to black-box reuse. Many different products for reuse range from ideas and algorithms to any documents that are

created during the software life cycle. Source code is most commonly reused; thus many people misconceive

software reuse as the reuse of source code alone. Recently source code and design reuse have become popular
with (object-oriented) class libraries, application frameworks, and design patterns.

 Systematic software reuse and the reuse of components influence almost the whole software

engineering process (independent of what a component is). Software process models were developed to provide

guidance in the creation of high-quality software systems by teams at predictable costs. The original models

were based on the (mis)conception that systems are built from scratch according to stable requirements.

Software process models have been adapted since based on experience, and several changes and improvements

have been suggested since the classic waterfall model. With increasing reuse of software, new models for

software engineering are emerging. New models are based on systematic reuse of well-defined components that

have been developed in various projects.

 Component: Component is a software element that conforms to a component model and can be
independently deployed and composed without modification according to a composition standard. Example:

General examples of concrete components include interface, computational, memory, manager, controller

components and Web services. Components may come from many domains, in many languages and design

notations. Also versions of components may also exist. Due to this large number of components, we think that a

component management system is needed in order to keep track of the properties of all the components which

are available. To incorporate reusable components into systems, programmers must be able to find and

understand them. If this process fails, then reuse cannot happen. Thus, how to index and represent these

components so that they can be found and understood are two important issues in creating a reuse tool.

Abstract
 The reuse system presented here is based on the principles of Attribute value classification

and Threshold value. It allows a software designer to define the component, and retrieve the

components which are similar to the required one. Algorithms to compute these reuse candidates are

described. Once the reuse candidates for the required operations have been selected, the reuse system

computes a list of packages for the set of operations. Linear-Search Algorithms for determining the

package reuse list are also presented. If the suggested packages don’t satisfy the requirements, the
user may try slightly different operation descriptions to find other candidates. This approach

facilitates the user to browse among similar components in order to identify the best candidates for

reuse. The proposed classification system takes advantage of the positive sides of each classification

scheme, whilst hopefully rendering the negative sides redundant. This classification scheme uses the

attribute value for different parts of a component. The attribute value scheme is initially used within

the classification for specifying the vendor, platform, operating system and development language

relating to the component. This allows the search space to be restricted to specific libraries according

to the selected attribute values.

KEYWORDS: Reuse, Software components, classification, search, insert, attributes.

A Firm Retrieval Of Software…

www.ijceronline.com ||May ||2013|| Page 79

 Classifying software allows users to organize collections of components into structures that they can

search easily.There have been many attempts to classify reusable components using various techniques.

Normally, each of these methods has been implemented discretely. Each of the four main methods described

(free text, attribute value, enumerated and faceted classification) has advantages and disadvantages associated

with them. The proposed classification system takes advantage of the positive sides of each classification

scheme, whilst hopefully rendering the negative sides redundant. This classification scheme uses the attribute

value for different parts of a component. The attribute value scheme is initially used within the classification for
specifying the vendor, platform, operating system and development language relating to the component.

 This allows the search space to be restricted to specific libraries according to the selected attribute

values. Additionally, this method will allow the searches to be either as generic or domain specific as required.

The functionality of the component is then classified using a faceted scheme. In addition to the functional facets

is a facet for the version of the component. The version of a component is directly linked to its functionality as a

whole, i.e. what it does, what it acts upon, and what type of medium it operates within. The system also stores

the descriptions of each component uploaded in the repository. So the system can also support keyword based

search. If system stores most of the component‟s properties the system can serve better and can be used in

different ways. Systematic software reuse is seen as a solution to address the need for short development time

without compromising efficiency. Research is ongoing to develop more user-friendly and effective reuse
systems. A considerable number of tools and mechanisms for supporting reuse activities in software

development have been proposed.

Software Reuse:

Definition1: “Reusability is a measure of the ease with which one can use those previous concepts or objects in

the new situations”.

Definition2: “Reuse is the use of previously acquired concepts or objects in a new situation, it involves encoding

development information at different levels of abstraction, storing this representation for future reference,

matching of new and old situations, duplication of already developed objects and actions, and their adaptation to

suit new requirements”.

Software components provide a vehicle for planned and systematic reuse. The software community does not yet

agree on what a software component is exactly. Nowadays, the term component is used as a synonym for object
most of the time, but it also stands for module or function. Recently the term component-based or component-

oriented software development has become popular. In this context components are defined as objects plus

some-thing. What something is exactly, or has to be for effective software development, remains yet to be seen.

However, systems and models are emerging to support that notion.

II. EXISTING SYSTEM
 Component Classification: The generic term for a passive reusable software item is a component.

Components can consist of, but are not restricted to ideas, designs, source code, linkable libraries and testing

strategies. The developer needs to specify what components or type of components they require. These
components then need to be retrieved from a library, assessed as to their suitability, and modified if required.

Once the developer is satisfied that they have retrieved a suitable component, it can then be added to the current

project under development. The aim of a „good‟ component retrieval system is to be able to locate either the

exact component required, or the closest match, in the shortest amount of time, using a suitable query. The

retrieved component(s) should then be available for examination and possible selection.Classification is the

process of assigning a class to a part of interest. The classification of components is more complicated than, say,

classifying books in a library. A book library cataloguing system will typically use structured data for its

classification system (e.g. the Dewey Decimal number). Current attempts to classify software components fall

into the following categories: free text, enumerated, attribute-value, and faceted. The suitability of each of the

methods is assessed as to how well they perform against the previously described criteria for a „good‟ retrieval

system, including how well they manage „best effort retrieval‟.Component Classification Schemes: There are
four classification techniques.

2.1 Free Text Classification

Free text retrieval performs searches using the text contained within documents. The retrieval system is

typically based upon a keyword search. All of the document indexes are searched to try to find an appropriate

entry for the required keyword. The major drawback with this method is the ambiguous nature of the keywords

used. Another disadvantage is that a search my result in many irrelevant components. A typical example of free

text retrieval is the „grep‟ utility used by the UNIX manual system. This type of classification

generates large overheads in the time taken to index the material, and the time taken to make a query.

A Firm Retrieval Of Software…

www.ijceronline.com ||May ||2013|| Page 80

All the relevant text (usually file headers) in each of the documents relating to the components are

index, which must then be searched from beginning to end when a query is made.

2.2 Enumerated Classification

Enumerated classification uses a set of mutually exclusive classes, which are all within a hierarchy of a

single dimension. A prime illustration of this is the Dewey Decimal system used to classify books in a

library. Each subject area, for example, Biology, Chemistry etc, has its own classifying code. As a sub code
of this is a specialist subject area within the main subject. These codes can again be sub coded by author.

This classification method has advantages and disadvantages pivoted around the concepts of a unique

classification for each item. The classification scheme will allow a user to find more than one item that is

classified within the same section/subsection assuming that if more than one exists. For example, there may

be more than one book concerning a given subject, each written by a different author.

This type of classification schemes is one dimensional, and will not allow flexible classification of

components into more than one place. As such, enumerated classification by itself does not provide a good

classification scheme for reusable software components.

2.3 Attribute value

The attribute value classification scheme uses a set of attributes to classify a component [6]. For
example, a book has many attributes such as the author, the publisher, a unique ISBN number and

classification code in the Dewey Decimal system. These are only example of the possible attributes.

Depending upon who wants information about a book, the attributes could be concerned with the number

of pages, the size of the paper used, the type of print face, the publishing date, etc. Clearly, the

attributes relating to a book can be:

1. Multidimensional. The book can be classified in different places using different attributes.

2. Bulky. All possible variations of attributes could run into many tens, which may not be known

at the time of classification.

Each attribute has the same weighting as the rest, the implications being that it is very difficult to determine how

close a retrieved component is to the intended requirements, without visually inspecting the contents.

2.4 Faceted Classification
Faceted classification schemes are attracting the most attention within the software reuse community. Like the

attribute classification method, various facets classify components; however, there are usually a lot fewer facets

than there are potential attributes (at most, 7). Ruben Prieto-Diaz has proposed a faceted scheme that uses six

facets. He proposed three functional and three environmental facets.

1. The Functional Facets are: Function, Objects, and Medium.

2. The Environmental Facets are: System type, Functional area, setting.

Each of the facets has to have values assigned at the time the component is classified. The individual

components can then be uniquely identified by a tuple.

For example: <add, arrays, buffer, database manager, billing, book store>

Clearly, it can be seen that each facet is ordered within the system. The facets furthest to the left of the tuple

have the highest significance, whilst those to the right have a lower significance to the intended component.
When a query is made for a suitable component, the query will consist of a tuple similar to the classification

one, although certain fields may be omitted if desired.

For example: <add, arrays, buffer, database manager, *, *>

The most appropriate component can be selected from those returned since the more of the facets from the left

that match the original query, the better the match will be.

Frakes and Pole conducted an investigation as to the most favourable of the above classification methods. The

investigation found no statistical evidence of any differences between the four different classification schemes;

however, the following about each classification method was noted:

 Enumerated classification: Fastest method, difficult to expand.

 Faceted classification: Easily expandable, most flexible.

 Free text classification: Ambiguous, indexing costs.
Attribute value classification: Slowest method, no ordering.

3. Proposed System

There have been many attempts to classify reusable components using various techniques. Normally, each of

these methods has been implemented discretely. Each of the four main methods described (free text, attribute

value, enumerated and faceted classification) has advantages and disadvantages associated with them. The

proposed classification system takes advantage of the positive sides of each classification scheme, whilst

A Firm Retrieval Of Software…

www.ijceronline.com ||May ||2013|| Page 81

hopefully rendering the negative sides redundant. This classification scheme uses the attribute value for different

parts of a component. The attribute value scheme is initially used within the classification for specifying the

vendor, platform, operating system and development language relating to the component.

This allows the search space to be restricted to specific libraries according to the selected attribute values.

Additionally, this method will allow the searches to be either as generic or domain specific as required.

The next step is retrieval of component based on the component name and the threshold value. The technique

used here is linear search algorithm. First it retrieve based on component name from repository and then find the
distance and compare it with the threshold value. If the distance value is less than the threshold value add the

component to the final out put list and display them as the output. Here we have download option by click on it

you can download that component.

Fig. 1 Proposed System

3.1 Component Classification
The generic term for a passive reusable software item is a component. Components can consist of, but are not

restricted to ideas, designs, source code, linkable libraries and testing strategies. The developer needs to specify

what components or type of components they require.

These components then need to be retrieved from a library, assessed as to their suitability, and modified if

required. Once the developer is satisfied that they have retrieved a suitable component, it can then be added to

the current project under development. The aim of a „good‟ component retrieval system is to be able to locate

either the exact component required, or the closest match, in the shortest amount of time, using a suitable query.

The retrieved component(s) should then be available for examination and possible selection.

An integrated classification scheme, which employs a combination of one or more classification

techniques, is proposed and likely to enhance the classification efficiency. The proposal is described in the

following sub section. This had given rise to development of a software tool to classify a software
component and build reuse repository.

Integrated classification scheme which combines the attribute value and faceted classification schemes to

classify components with the following attributes.

1. Operating system

2. Language

3. Keywords

4. Inputs

5. Outputs

6. Domain

7. Version

8. Category

The attributes when used in query can narrow down the search space to be used while retrieval.
The proposed software tool will provide an user friendly interface for browsing, retrieving and inserting

components. Two algorithms are proposed for searching and inserting components as part of this software tool.

3.2 Algorithm 1: Component Insert (Component facet and attributes)

Purpose: This algorithm inserts a component into the reuse repository with integrated classification

Component

Insertion

Component

Repository

User inputs

attributes

Component

Search Engine

Filtered

Components

Similar

Components

Similarity

Distance

Domain

specific Component

name

Threshold

value

A Firm Retrieval Of Software…

www.ijceronline.com ||May ||2013|| Page 82

scheme attributes.

Input: Component facet and attributes

Output: Component insertion is success or failure.

Variables: rrp: reuse repository array,

rp: repository pointer,

flag : boolean

if((rrp[i].lang<>lan) and rrp[i].fun>fun) and (rrp[i].dom<>dom) and (rrp[i].os<>os) and (rrp[i].ip<>ip) and
(rrp[i].op<>op) and (rrp[i].ver<>ver))

i++;

else

flag = true;

break;

if (flag)

rrp[rp].lang = lan;

rrp[rp].fun = fun;

rrp[rp].os = os;

rrp[rp].dom = dom;

rrp[rp].ip = ip;
rrp[rp].op = op;

rrp[rp].ver = ver;

return successful insertion;

else

component is already exists;

The insert algorithm stores the newly designed or adapted existing component into the reuse repository.

When component attributes are compared with existing repository component attributes and determines no

similar components are found then component is inserted successfully otherwise component not inserted in

repository and exits giving message that component already exists.

3.3 Algorithm 2: Search Component (Component facet and attributes)

Purpose: This algorithm searches for relevant components with given component facet and attributes from reuse
repository.

Input: Component facet and Component attributes.

Output: list of relevant componentsPlace table titles above the tables.

Variables: rrp: reuse repository array

rp: repository pointer

table: result array

i.j : internal variables

flag: boolean

if (component facet <> null)

for (i=1; i <= rp ; i++)

if ((rrp[i].language = lan) and (rrp[i].function = fun))
table[j].lang = rrp[j].lang

table[j].fun = rrp[j].fun

table[j].os = rrp[j].os

table[j].ip = rrp[j].ip

table[j].op = rrp[j].op

j++;

else

flag = 0;

if (component facet<>null) and (any of the other attributes<> null)

for (i =1;i <= rp ;i++)

if ((rrp[i].lang = lan) and (rrp[i].fun = fun))
if((rrp[i].os = os) or (rrp[i].ip = ip) or (rrp[i].op = op) or rrp[i].dom = dom) or (rrp[i].ver = ver))

table[j].lang = rrp[i].lang;

table[j].fun = rrp[i].fun;

table[j].os = rrp[i].os;

table[j].dom = rrp[i].dom;

table[j].ip = rrp[i].ip;

table[j].op = rrp[i].op;

A Firm Retrieval Of Software…

www.ijceronline.com ||May ||2013|| Page 83

table[j].ver = rrp[i].ver;

if(!flag)

No component is matched with given attributes.

4. Conclusion and Future Scope

The performance of this reuse system can be evaluated from the standpoint of user effort and maintenance

effort. The user effort consists of all the effort which must be expended by the user in order to use the reuse
system. It is very difficult to formally measure user effort. However, queries can be easily formulated, and

therefore the user is not required to learn any formalism. The maintenance effort consists of all the effort which

is necessary to keep the system working and up to date. This effort includes adding components to the

knowledge base. The maintenance stage is highly facilitated in this system, as insertion of new components into

the knowledge base can be done incrementally.

All the algorithms can be implemented in common lisp. The proposed reuse system can be used within an

application domain like Unit, and utilize the reusable concepts of Ada. More recent object-oriented reusable

designs like frameworks can also work with our system. One of the prime economic justification that for

proposing this reuse system is to allow high-speed and low-cost replacement of aging systems, whose functions

and data requirements have become well known.

User gets logged-in and searches for the components from the database. Then the user stores the searched
components in the repository. Later on next user gets logged in and searches the component from the repository

.Then the matched components are displayed on the grid view.

In addition to the retrieval of relevant component and also multimedia effect like audio output, we can still work

on applying more multimedia effects like adding video output for the searched output so as to make the

registered user more comfortable in selecting and downloading the searched component.

References

[1] Gowtham Gajala, “Implementation of Attribute values and Faceted value classification scheme for

constructing Reuse Repository”, International Journal of Computer Trends and Technology-

volume4Issue1- 2013.

[2] Ruben Prieto-Diaz, “Implementing Faceted Classification for Software Reuse”, Communication of

the ACM, Vol. 34, No.5, May 1991.
[3] R.Prieto-Diaz and P. Freeman, “Classifying Software for Reusability”, IEEE Soflware, Ja.niiary 1987. pp.

6-16.

[4] Boelim, B., Penedo, M.H., Stuckle, E.D., Williams, R.D. and Pyster, A.B. “A Software Development

Environment for Improving Software Productivity”, IEEE Computer, 17(6), 1984, pp. 30-42.

[5] E. J. Ostertag and J. A. Hendler, An AI-based reuse system, Tech. Rep. (2.9-TR-2197, UMIACSTR- 89-

16, Univ. of Maryland, Dept. of Computer Science, Feb 1989, pp. 1-2G.

[6] M. Wood and I. Sommerville, “An Information Retrieval System for Software Components,” SIGIR

Forum, Vol. 22, No. 314, Spring/Summer 1988, pp. 11-25.

[7] N. J. Nilsson, Principles of Artificial Intelligence, Morgan Kaufmann, CA, MIT Press, 1980, pp. G8-88.

[GI Thomas H. Cormen, Charles E. Leisersoii and Ronald L. Rivest, Introduction to Algorithms, MIT

Press, 1990, pp. 525-530.
[8] William B. Frakes and Kyo Kang, “Software Reuse Research: Status and Future”, IEEE Transactions on

Software Engineering, VOL. 31, NO. 7, JULY 2005.

[9] Rym Mili, Ali Mili, and Roland T. Mittermeir, “Storing and Retrieving Software Components a

Refinement Based System”, IEEE Transactions of Software Engineering, 1997, Vol. 23, No. 7, pp. 445-

460.

