

Integral Solutions of the Homogeneous Cubic Equation

M.A.Gopalan¹, V.Geetha²

¹Professor, Department of Mathematics, Shrimathi Indira Gandhi College, Trichy ²Asst.Professor, Department of Mathematics, Cauvery College For Women, Trichy.

ABSTRACT:

The cubic equation $x^3 + y^3 + xy(x + y) - z^3 - w^3 - zw(z + w) = (x + y + z + w)X^2$ is analysed for its non-zero integral solutions. A few interesting relations between the solutions and special numbers are exhibited.

Keywords: Homogeneous equation with five unknowns, Integral solutions.

M.Sc 2000 Mathematics subject classification:11D25

NOTATIONS:

Special Number	Notations	Definitions
Gnomonic number	G_n	2n-1
Pronic number	P_n	n(n+1)
Star number	S_n	6n(n-1)+1
Octahedral number	OH_n	$\frac{n(2n^2+1)}{3}$

I. LINTRODUCTION

Integral solutions for the homogeneous or non-homogeneous Diophantine cubic equations is an interesting concept as it can be seen from [1-2]. In [3-13] a few special cases of cubic Diophantine equations with 4 unknowns are studied. In [14-15], the cubic equation with five unknowns is studied for its non-zero integral solutions. This communication concerns with a another interesting cubic equation with five unknowns given by $x^3 + y^3 + xy(x+y) - z^3 - w^3 - zw(z+w) = (x+y+z+w)X^2$ for determining its integral solutions. A few interesting relations between the solutions are presented.

II. METHOD OF ANALYSIS

The cubic Diophantine equation with five unknowns to be solved for getting non-zero integral solutions is

$$x^{3} + y^{3} + xy(x+y) - z^{3} - w^{3} - zw(z+w) = (x+y+z+w)X^{2}$$
(1)

On substituting the linear transformations

$$x = u + v, y = u - v, z = u + p, w = u - p$$
 (2)

in (1) leads to

$$v^2 - p^2 = X^2 (3)$$

2.1Pattern 1:

Equation (3) can be written as,

$$v^2 = p^2 + X^2 (4)$$

www.ijceronline.com ||May||2013|| Page 23

which is satisfied by

$$v = m^{2} + n^{2}, p = 2mn, X = m^{2} - n^{2}$$

$$v = m^{2} + n^{2}, p = m^{2} - n^{2}, X = 2mn$$

$$m > n > 0$$
(5)

Substituting (5) in (2), the two sets of solutions satisfying (1) are obtained as follows:

SET 1:

$$x(u, m, n) = u + m^{2} + n^{2}$$

$$y(u, m, n) = u - m^{2} - n^{2}$$

$$z(u, m, n) = u + 2mn$$

$$w(u, m, n) = u - 2mn$$

$$X(m, n) = m^{2} - n^{2}$$

SET 2:

$$x(u, m, n) = u + m^{2} + n^{2}$$

$$y(u, m, n) = u - m^{2} - n^{2}$$

$$z(u, m, n) = u + m^{2} - n^{2}$$

$$w(u, m, n) = u - m^{2} + n^{2}$$

$$X(m, n) = 2mn$$

2.2Pattern 2:

Equation (3) can be written as

$$p^2 + X^2 = v^2 * 1 (6)$$

Assume
$$v = a^2 + b^2 \tag{7}$$

Write 1 as

$$1 = \frac{(1+i)^{2n} (1-i)^{2n}}{2^{2n}} \tag{8}$$

Substituting (7) and (8) in (6) and using the method of factorization, define

$$p + iX = (a + ib)^{2} \frac{(1+i)^{2n}}{2^{n}}$$
(9)

Equating real and imaginary parts of (9), we have

$$p = (a^2 - b^2)\cos\frac{n\pi}{2} - 2ab\sin\frac{n\pi}{2}$$

$$X = (a^2 - b^2)\sin\frac{n\pi}{2} + 2ab\cos\frac{n\pi}{2}$$

The corresponding integral values of x, y, z, w and X satisfying (1) are obtained as,

$$x(u,a,b) = u + a^{2} + b^{2}$$

$$y(u,a,b) = u - a^{2} - b^{2}$$

$$z(u,a,b) = u + (a^{2} - b^{2})\cos\frac{n\pi}{2} - 2ab\sin\frac{n\pi}{2}$$

$$w(u,a,b) = u - (a^{2} - b^{2})\cos\frac{n\pi}{2} + 2ab\sin\frac{n\pi}{2}$$

$$X(a,b) = (a^{2} - b^{2})\sin\frac{n\pi}{2} + 2ab\cos\frac{n\pi}{2}$$

Properties:

1.Each of the following expression is a nasty number

i.
$$3[x(u,a,b) - y(u,a,b)]^2 + (-1)^n [12x(u,a,b)^2 - 3(z(u,a,b) - w(u,a,b))^2]$$

ii. $6[x(u,a,b) \times y(u,a,b) + (a^2 + b^2)^2]$

2. (2x(u,a,b), z(u,a,b) - w(u,a,b), x(u,a,b) - y(u,a,b)) forms a Pythagorean triple.

3.If a,b are taken as the generators of the Pythagorean triangle (α,β,γ) whose sides are $\alpha=a^2-b^2$; $\beta=2ab$; $\gamma=a^2+b^2$ then the product $\left[X(a,b)\sin\frac{n\pi}{2} + \left(\frac{z(u,a,b)-w(u,a,b)}{2}\right)\cos\frac{n\pi}{2}\right] \left[X(a,b)\cos\frac{n\pi}{2} - \left(\frac{z(u,a,b)-w(u,a,b)}{2}\right)\sin\frac{n\pi}{2}\right]$ represents two times its area.

4.
$$x(u, a, b)y(u, a, b) - z(u, a, b)w(u, a, b) \equiv 0 \pmod{2}$$

$$5. x(u, a, b) \pm y(u, a, b) \equiv 0 \pmod{2}$$

2.3Pattern 3:

In (6) 1 can be written as

$$1 = \frac{(p^2 + q^2 + i2pq)(p^2 - q^2 - i2pq)}{(p^2 + q^2)^2}; \qquad p > q > 0$$

Proceeding as in Pattern II

$$p + iX = (a + ib)^{2} \frac{(p^{2} + q^{2} + i2pq)(p^{2} - q^{2} - i2pq)}{(p^{2} + q^{2})^{2}}$$
(10)

Equating real and imaginary parts,

$$p = (a^{2} - b^{2}) \frac{(p^{2} - q^{2})}{(p^{2} + q^{2})} - 4ab \frac{pq}{(p^{2} + q^{2})}$$
(11)

$$X = (a^{2} - b^{2}) \frac{2pq}{(p^{2} + q^{2})} + 2ab \frac{(p^{2} - q^{2})}{(p^{2} + q^{2})}$$
(12)

www.ijceronline.com ||May||2013|| Page 25

Since our aim is to find the integral solutions, substituting $a = (p^2 + q^2)A$, $b = (p^2 + q^2)B$ in (7),(11) and (12)

$$v = (p^2 + q^2)^2 (A^2 + B^2)$$
(13)

$$p = (p^2 + q^2)[(A^2 - B^2)(p^2 - q^2) - 4ABpq]$$
(14)

$$X = 2pq(p^2 + q^2)(A^2 - B^2) + 2(p^2 + q^2)AB(p^2 - q^2)$$
(15)

Substituting (13), and (14) in (2) and using (15) we have the integral solutions of (1) as,

$$x(u, A, B) = u + (p^{2} + q^{2})^{2} (A^{2} + B^{2})$$

$$y(u, A, B) = u - (p^{2} + q^{2})^{2} (A^{2} + B^{2})$$

$$z(u, A, B) = u + (p^{2} + q^{2})(A^{2} - B^{2})(p^{2} - q^{2}) - (p^{2} + q^{2})4ABpq$$

$$w(u, A, B) = u - (p^{2} + q^{2})(A^{2} - B^{2})(p^{2} - q^{2}) + (p^{2} + q^{2})4ABpq$$

$$X(A, B) = 2pq(p^{2} + q^{2})(A^{2} - B^{2}) + 2(p^{2} + q^{2})AB(p^{2} - q^{2})$$

Properties:

$$1.4pq[z(u, p, q) - w(u, p, q)] - 2(p^2 + q^2)x(u, p, q) \equiv 0 \pmod{8}$$

2.
$$2G_p(p^4 - q^4) + w(u, p, p - 1) - z(u, p, p - 1) \equiv 0 \pmod{8}$$

3.
$$pq[z(u, p, p-1) - w(u, p, p-1)] - (p^2 - q^2)x(u, p, p-1) + 2(p^2 + q^2)^3P_{p-1} = 0$$

$$4.2(p^2+q^2)^2S_p+3[y(u,p,p-1)-x(u,p,p-1)] \equiv 0 \pmod{4}$$

5.3
$$OH_{pq} + z(u, p, p) - w(u, p, p) - pq \equiv 0 \pmod{2}$$

6.
$$w(u, p, q) - z(u, p, q) + x(u, p, q) + 10(p^2 + q^2)q^2$$
 is a perfect square.

7. Each of the following expression is a nasty number

i.
$$6u[x(u, A, B) + y(u, A, B) + z(u, A, B) + w(u, A, B)]$$

ii.
$$6[x(u, A, A) - y(u, A, A)]$$

III. CONCLUSION

To conclude one may search for other patterns of solutions and their corresponding properties.

REFERENCES

- [1]. L.E. Dickson, History of Theory of Numbers, Vol 2, Chelsea Publishing Company, New York, 1952.
- [2]. L.J. Mordell, Diophantine Equations, Academic Press, London, 1969.
- [3]. M.A. Gopalan, and S. Premalatha, Integral solutions of $(x + y)(xy + w^2) = 2(k^2 + 1)z^3$, Bulletin of Pure and Applied Sciences, Vol.29E,No.2,197-202, 2009.
- [4]. M.A. Gopalan, and V. Pandichelvi, Remarkable Solutions on the cubic equation with fou unknowns $x^3 + y^3 + z^3 = 28(x + y + z)w^2$, Antarctica J Math, Vol.7, No.4,393-401, 2010.
- [5]. M.A. Gopalan, and B.Sivakami, Integral solutions of homogeneous cubic equation with four unknowns $x^3 + y^3 + z^3 = 3xyz + 2(x + y)w^3$, Impact. J.Sci.Tech.Vol.4,No.3,53-60,2010.

- [6]. M.A.Gopalan and S.Premalatha, On the cubic Diophantine equation with four unknowns $(x-y)(xy+w^2)=2(n^2+2n)z^3$, International Journal of Mathematical Sciences, Vol.9,No.1-2, Jan-June, 171-175,2010.
- [7]. M.A.Gopalan and J.Kaligarani, Integral solutions of $x^3 + y^3 + xy(x + y) = z^3 + w^3 + (z + w)zw$ Bulletin of Pure and Applied Sciences, Vol.29E,No.1,169-173, 2010.
- [8]. M.A. Gopalan, and S. Premalatha, Integral solutions of $(x + y)(xy + w^2) = 2(k + 1)z^3$, The Global Journal of Applied Mathematics and Mathematical Sciences, Vol.3, No.1-2, 51-55, 2010.
- [9]. M.A.Gopalan, S.Vidhyalakshmi, and A.Mallika, Observation on cubic equation with four unknowns $xy + 2z^2 = w^3$, The Global Journal of Applied Mathematics and Mathematical Sciences, Vol.2, No.1-2, 69-74, 2012.
- [10]. M.A.Gopalan , S.Vidhyalakshmi, and A.Mallika, Observation on cubic equation with four unknowns $2(x^3 + y^3) = z^3 + w^2(x + y)$, IJAMP, Vol.4, No.2, 103-107, 2012.
- [11]. M.A.Gopalan , S.Vidhyalakshmi, and G.Sumathi, On the homogeneous cubic equation with four unknowns $x^3 + y^3 = 14z^3 3w^2(x + y)$, Discovery, Vol.2, Np.4,17-19,2012.
- [12]. M.A.Gopalan and K.Geetha , Observations on cubic equation with four unknowns $x^3 + y^3 + xy(x + y) = z^3 + 2(x + y)w^2$, International Journal of Pure and Applied Mathematical Sciences, Vol.6,No.1,25-30,2013.
- [13]. M.A.Gopalan, Manju Somanath and V.Sangeetha Lattice Points on the homogeneous cubic equation with four unknowns $(x + y)(xy + w^2) = (k^2 1)z^3$, k > 1. Indian journal of Science, Vol.2, No.4, 97-99,2013.
- [14]. M.A. Gopalan, S.Vidhyalakshmi,and T.R.UshaRani, On the cubic equation with five unknowns $x^3 + y^3 = z^3 + t^2(x + y) + w^3$, Indian journal of Science, Vol.1,No.1,17-20,2012.
- [15]. M.A. Gopalan, S.Vidhyalakshmi,and T.R.UshaRani, Integral solutions of the cubic equation $x^3 + y^3 + u^3 + v^3 = kt^3$, Bessel J.Math, Vol.3,No.1,69-75,2013.