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( ABSTRACT:

The cubic equation X° +y> +Xy(X+y) —2° —W> —2w(z + W) = (X + Y+ Z + W) X is
analysed for its non-zero integral solutions. A few interesting relations between the solutions and
special numbers are exhibited.
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NOTATIONS:

Special Number Notations Definitions

Gnomonic number G, 2n-1

Pronic number P, n(n +1)

Star number Sn 6n(n—1)+1
2

Octahedral number OH, w

l. I.INTRODUCTION
Integral solutions for the homogeneous or non-homogeneous Diophantine cubic equations is an
interesting concept as it can be seen from[1-2]. In [3-13] a few special cases of cubic Diophantine equations
with 4 unknowns are studied. In [ 14-15], the cubic equation with five unknowns is studied for its non-zero
integral solutions. This communication concerns with a another interesting cubic equation with five unknowns

given by X3+ Y2+ xy(x+y)— 2> —wW® —2w(z + W) = (X+ Y+ Z+ W)X ? for determining its integral
solutions. A few interesting relations between the solutions are presented.

1. METHOD OF ANALYSIS
The cubic Diophantine equation with five unknowns to be solved for getting non-zero integral
solutions is

Y Hxy(X+y) -2 —W —zw(z + W) = (X + Yy + 2+ W) X ? @)
On substituting the linear transformations
X=U+V,y=U—V,Z=U+ p,W=uU—p 2)
in (1) leads to
Vi p? =X’ ®
2.1Pattern 1:

Equation (3) can be written as,

vi=p?+X? )
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which is satisfied by

v=m?+n? p=2mn, X =m? —n®
m>n>o0 ®)

v=m?+n®, p=m?®-n? X =2mn
Substituting (5) in (2) , the two sets of solutions satisfying (1) are obtained as follows:
SET 1:
x(u,m,n) =u+m? +n?
y(u,m,n)=u-m? —n?
z(u,m,n)=u+2mn
w(u,m,n)=u—2mn
X(m,n)=m® —n®

SET 2:

x(u,m,n)=u+m? +n?
y(u,m,n)=u—-m? —n?
z(u,m,n)=u+m?-n?
w(u,m,n)=u—-m? +n?
X (m,n)=2mn

2.2Pattern 2:
Equation (3) can be written as
p?+ X2 =v?*l (6)
Assume V=a’ +b? )
Write 1 as

1 £\ 2n 1_ 2n
MEDRE) o

Substituting (7) and (8) in (6) and using the method of factorization, define

, +0)7

p+iX =(a+ib) o ©)

Equating real and imaginary parts of (9),we have

p=(a’ —bz)cosn%—Zabsinn—”

X =(a® —bz)sin%er 2abcos %
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The corresponding integral values of X, Y, Z,Wand X satisfying (1) are obtained as,

x(u,ab)=u+a’+b’
y(u,a,b)=u—-a*-b?

z(u,a,b)=u + (a? —bz)cosn%—Zabsinn%

w(u,a,b)=u-(a“ -b )cos7+2absm7
2 oy . N7 Nz

X(a,b)=(a” -b )sm7+2abc037

Properties:
1.Each of the following expression is a nasty number

i.3[x(u,a,b) — y(u,a,b)]* + (-1)"[i2x(u, a,b)? — 3(z(u, a,b) — w(u, a,b))?]
ii.6[x(u, a,b) x y(u,a,b) + (a +b?)?|
2.(2x(u,a,b),z(u,a,b) —w(u, a,b), x(u, a,b) — y(u, a,b)) forms a Pythagorean triple.

3I1f a,b are taken as the generators of the Pythagorean triangle («, 3,y) whose sides are
a=a’—-b?; f=2ab;y=a’ +b’then the product

{X(a b)sin n; (z(u a,b) —w(u, a, b)j - }{X(a b)cosn; (z(u,a,b)—w(u,a,b)jsin

2 2

represents two times its area.
4. X(u,a,b)y(u,a,b)—z(u,a,b)w(u, a,b) =0(mod2)
5.X(u,a,b) + y(u,a,b) =0(mod?2)

2.3Pattern 3:

In (6) 1 can be written as

1 (P”+0d” +i2pg)(p° —q" ~i2pq) .

(p°+q°)’ P>
Proceeding as in Pattern 1l
0 1iX = (atib)? P+ +i(2pp2qi(§22)2—q2 ~i2pa) (10)
Equating real and imaginary parts,
p=(a2—b2)(p2_q2)—4ab i (11)

(p*+9°) (p*+9%)

X =(a? ~b?)2P9__, o (P"=0)
p*+a’)  (p*+0)

(12)
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Since our aim is to find the integral solutions, substituting a=(p* +q?)A,b=(p* +q%)B in (7),(11)
and (12)

v=(p®+q°)*(A* +B?) (13)
p=(p? +q°)|(A2 —B?)(p? —q%) — 4ABpq] (14)
X =2pq(p* +q*)(A* —B?)+2(p* +q*)AB(p* —q°) (15)

Substituting (13), and (14) in (2) and using (15) we have the integral solutions of (1) as,

x(u,A,B)=u+(p® +9*)*(A* +B?)
y(u,AB)=u—(p*+9°)*(A* + B?)
z(u,A/B)=u+(p®+q*)(A* -B*)(p* -q*) - (p* +q°)4ABpq
w(u, A,B)=u—(p®+q*)(A* =B*)(p* —q”) + (p” +q°)4ABpq
X(A,B)=2pq(p* +9°)(A* - B*)+2(p* +q*)AB(p* —q°)

Properties:

1.4pa[z(u, p,q) —w(u, p,q)]-2(p* +4*)x(u, p,q) =0(mod 8)
2.2G,(p* —a") +w(u, p, p—1) — z(u, p, p—1) =0(mMod8)
3. pafz(u, p, p =D —w(u, p, p~D]-(p* ~a*)x(u, p, p~1) +2(p* +¢°)°P,, =0
4.2(p* +9%)%S, +3[y(u, p, p—1) — x(u, p, p—1)]=0(mod4)
5.30H ,, +z(u, p, p) —w(u, p, p) — pq=0(mod 2)
6.W(u, p,q) —z(u, p,d) + X(u, p,q) +10(p* +04°)q" is a perfect square.
7. Each of the following expression is a nasty number
i.6u[x(u, A, B) + y(u, A, B) + z(u, A, B) + w(u, A, B)]
ii. 6[x(u, A, A) — y(u, A, A)]

I1l. CONCLUSION
To conclude one may search for other patterns of solutions and their corresponding properties.
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