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I. INTRODUCTION 
Color image and video compression has become a major task in today’s communication environment. 

Usually color images are represented by the three RGB color components, which are highly correlated [4], [7], 

[10], [15], [22]. Naturally, it is a naive approach to compress each color component separately. To improve the 

information distribution in the image data, usually a color components transform (CCT) is used. The RGB to 

YUV transform is employed for example in JPEG [20] and JPEG2000 [13], while the Karhunen Loeve 
transform (KLT) is used in [5], [8] and [21]. Nevertheless, these transforms are presently used arbitrarily since 

no optimization process has been proposed so far for color image compression. Part of the reason has been the 

lack of a model for color images and their Rate-Distortion (R-D) curve. Recently, such a model has been 

introduced for the analysis of color compression and its optimization [3]. The model has been proposed in the 

context of the widely used subband transform coders. Based on the model, a color compression algorithm has 

been presented, outperforming commonly used algorithms. In this work we present an improved compression 

algorithm based on the new Rate-Distortion theory and on a probability model for the distribution of the 

subband transform coefficients. We also present an application of the R-D model for rate-control of the 

compression. This application can be used to achieve a certain compression ratio or target rate. This approach to 

image compression is applicable to both still and video coding. 

  

The structure of the work is as follows. In Subsections 1.1 and 1.2 we briefly review subband 
transforms and the Rate-Distortion theory of subband transform coders. In Section 2 we present the new 

compression algorithm for color images and compare its performance to that of presently available algorithms 

including [3]. In Section 3 the new rate-control algorithm is presented and its performance is measured for still 

images, and in Section 4 the algorithm is considered for video sequences. Finally, conclusions and a summary 

are given in Section 5.  

1.1. Subband transforms - definitions 

Subband transform coding is an efficient approach to image compression. Fig. 1 presents a filter bank 

interpretation of the general tree structured subband transform. The input signal  is decomposed by passing 

through a set of  analysis filters and down-sampling by a factor . Then its low frequencies subband  

is decomposed by the same filters and so on in an iterative fashion until depth  of the tree is reached. The 

signal can be reconstructed iteratively as shown in Fig. 2 by up-sampling the outputs  

( ) of the analysis filters at level  by a factor of , filtering them through a synthesis filter-
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bank and summing up the results to obtain the low pass subband at level  ( ). The original signal 

 can be considered as the subband  in this context, i.e., it is obtained using a reconstruction algorithm 

on the subbands at level . Compression can be achieved by quantization of the subband components and 

possibly omission of the less significant subbands.  
The DCT [14], the Discrete Wavelet Transform (DWT) [11] and filter-banks used for audio coding (e.g. [16]) 

readily fit into this typical structure.  

1.2. The Rate-Distortion model 
A brief presentation of the theory developed in [3] is summarized here. Given a color image in the RGB 

domain, we denote each pixel by a 3x1 vector . The RGB correlations are usually high for natural 

images [1], [4], [7], [10] and hence, a preprocessing stage of a color components transform (CCT) is usually 

performed prior to coding. Assuming that a CCT is applied to an image, denoted by a  matrix , we 

obtain for each pixel a new vector of 3 components , denoted . Thus  is related 

to  by:  

 (1) 

 
 

Figure 1. Tree structured subband transform: Analysis. 

 
Figure 2. Tree structured subband transform: Synthesis. 

Each component in the C1, C2, C3 color space is subband transformed, quantized and its samples are 

independently encoded (e.g., entropy coded). This description corresponds to typical image compression 

algorithms such as JPEG [20] and JPEG 2000 [13], when applied to a color image up to and including the 

quantization stage. Denote by  the reconstructed image in the RGB domain, the error covariance matrix in 

the RGB domain  is given by  

  (2) 

Assume that we have  subbands in the transform for each color component, indexed by 

 and  is the index of the color component. Then the average MSE (Mean Square 

Error) between the original and reconstructed images in the RGB domain is:  

  



On a Probabilistic Approach to Rate Control for… 

www.ijceronline.com                                                     ||April||2013||               Page 84 
 

 (3) 

where  stands for the rate allocated for the subband  of color component  and  is this subband’s 

variance.  is the sample rate of subband , meaning the ratio of the number of coefficients in this subband and 

the total number of coefficients in each component.  is the energy gain of subband  equal to the squared 

norm of the subband’s synthesis vectors [19].  is a constant dependent on the distribution of the subband 

transform coefficients in each color component and, finally, . Considering the optimization problem 

of minimizing (3) under the constraint  for some total image rate  and using Lagrange 

multipliers method, the Lagrangian to be minimized is:  

 

 

(4) 

                                                           
where  is the Lagrange multiplier. By minimizing (4), one can derive the optimal subband rates  and the 

target function for the optimal CCT. The optimal solution for this target function is image adaptive. A sub-

optimal solution is the DCT as a CCT [2], as used in this work. It is of interest to note that this result (without 

proof, however) was also found to be most efficient in [6].  

In practice, some coding systems such as JPEG perform down-sampling on part of the color components prior to 
coding. For such systems the down-sampling can be taken into account by introducing down-sampling factors 

, so that the global rate constraint for the image is  

 

 

(5) 

where the down-sampling could be, for example, by a factor of 2 horizontally and vertically and then  

. 

We thus wish to minimize the MSE of (3) under the rate constraint of (5). Additional constraints are the non-

negativity of the rates:  Using the Lagrange multipliers method, we have to minimize: 

 
 

                                      

(6) 

where  and  are the Lagrange multipliers for the rate constraint and the non-negativity constraints, 

respectively.  

Minimizing the Lagrangian  for the rates  requires knowing the rates that are positive and those that are 

zero. We denote by  the set of all the active subbands in the color component , that is, those subbands with 

positive rates:  

  (7) 

We also define the following:  

 
 

(8) 

i.e., the relative part of the coefficients in the active subbands from the total signal length ( ) and the weighted 

geometric mean of their variances (corrected by the energy gains ) . It can be shown that the solution 

for  becomes:  
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  (9) 

The determination of the active subbands can be done according to the algorithm given in [3].  

II. IMPROVING THE COMPRESSION ALGORITHM 

Based on the Rate-Distortion theory, a DCT-based algorithm for color image compression is proposed. 

This algorithm employs the DCT as the color components transform and utilizes the optimal rates expression of 

(9). It consists of the following stages:  

1. Apply the CCT (DCT) to the RGB color components of a given image to obtain new color components 

.  

2. Decimate the 2 color components with minimal energy (variance) by a factor of 2 in each direction.  

3. Apply the two-dimensional block DCT to each color component   

4. Quantize each subband of each color component independently using uniform scalar quantizers. The 
quantization step-sizes are chosen so that optimal subband rates are achieved according to Subsection 

1.2. The rates are calculated using the Laplacian distribution model for the coefficients of the DCT 

subband transform.  

5. Apply lossless coding to the quantized DCT coefficients. Coding techniques similar to JPEG [20] can 

be used: differential Huffman coding for the DC coefficients and zigzag scan, run-length coding and 

Huffman coding (combined with variable-length integer codes) for the AC coefficients.  
 

2.1. The Laplacian distribution 

We say that a stochastic variable  has Laplacian distribution if its probability distribution function is  

 
 

(10) 

for some positive constant . For such a variable, we can derive the variance  and entropy  as functions 

of  :  

 
 

(11) 

Thus the following relationship holds:  

 
 

(12) 

Assume that  is quantized by a uniform scalar quantizer with a step size  to the discrete variable . The 

probability distribution of  is  

 

 

 

(13) 

and hence:  
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(14) 

Defining  and using (9), we can derive the entropy of :  

 

 

(15) 

                                           



On a Probabilistic Approach to Rate Control for… 

www.ijceronline.com                                                     ||April||2013||               Page 86 
 

Note that the  parameter in (15) can be expressed by the standard deviation of  using (11) as   

2.2. DCT coefficients distribution 
When examining the coefficients’ distribution of the 2D block DCT, it can be concluded that the 

distribution of all the subbands, except for the DC subband, can be modeled by the Laplacian distribution [9]. 

Using this model we can benefit in 2 ways:  

1. An algorithm for the calculation of the quantization step sizes for optimal rates can be introduced based 

on the approximate connection [19]:  

  (16) 

2. where  is the entropy of subband  of the color component  prior to quantization and  is its 

quantization step. The quantization steps initialization can be chosen according to (11) directly by 

substituting the right hand side of (7) for , i.e., we get an expression that can be easily calculated: 

 
 

(17) 

3. where  is the initial quantization step and  is the optimal rate of subband  of color component 

. Following the initialization, the optimal quantization steps can be calculated iteratively using the 

update rule: 

 
 

(18) 

4. based on (11), where  and  are the current quantization steps and rates respectively, and  are 

the updated steps. This update rule can be repeated until the optimal rates  are sufficiently close, i.e., 

 for some small constant . Note that the rates  are measured by the entropies of 

the subbands. Those can be calculated as follows.  

5. The entropies of the quantized DCT coefficients can be approximately calculated according to (10) 

without the need to calculate the subband histograms. We use the Laplacian distribution assumption also 

for the DC subband, although its distribution is usually not Laplacian. The use of the approximated 

entropies reduces the number of the calculations required, thus reducing the run time of the algorithm - as 

discussed in Subsection 2.4.  

To assess the performance of the proposed approach, simulation results of the new algorithm with 

estimated rates (entropies) according to (10) are presented and compared to JPEG.  

2.3. Simulations and Comparison 

2.3.1 Comparison to JPEG 

Similar to the PSNR (Peak signal to Noise Ratio):  we use the PSPNR 

(Peak Signal to Perceptible Noise Ratio), defined as  

 

 

(19) 

where  (Weighted Mean Square Error) for each color component, is calculated as:  

 

 

(20) 

Here  denotes the visual perception weight of subband  and  is its MSE distortion. We have taken the 

WMSE suggested in [19] for JPEG2000, so that the subbands in (20) are of the Discrete Wavelet Transform 

(DWT). We consider 256x256 size images displayed on a screen as 12cm x 12cm size images and a viewing 

distance of approximately 50 cm. The PSPNR used here is the mean PSPNR of the three color components. 

Simulation results for several images are summarized in Table 1. It can be seen that the new algorithm 

outperforms JPEG by 1.5dB PSNR and 1.85dB PSPNR on average. These results are not limited just to the 

compression ratios of Table 1. Fig. 3 shows the algorithm’s mean performance gain for a range of compression 

ratios corresponding to the major range of PSNRs.  
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Table 1. PSNR and PSPNR results for the DCT-based compression algorithm with estimated rates (New 

Alg.) and JPEG at the same compression ratio (CR). 

  PSNR  PSPNR   

 Image  New Alg.  JPEG  New Alg.  JPEG  CR   

 

Lena  30.030  29.486  39.048  37.192  44.84   

 

Peppers  29.971  28.277  37.818  35.439  33.77   

 

Baboon  30.024  26.306  38.273  36.023  16.62   

 

Fruit  30.024  29.268  39.048  36.974  46.53   

 

Girl  29.987  28.719  38.407  36.871  52.56   

 

House  30.006  28.573  38.788  37.073  54.36   

 

Tree  29.987  28.798  39.210  38.072  14.19   

 Mean  30.004  28.490  38.656  36.806   
 

 
Figure 3. PSNR and PSPNR gains of the new algorithm (New Alg.) with estimated rates on JPEG for 

various values of PSNR. 

Visual results for the House and the Tree images are shown in Fig. 4. It can be seen that JPEG 

introduces color artifacts in both images. These are significantly less visible in our new algorithm at the same 

rate. Furthermore, quantitatively, there is a gain of 1.25dB PSNR and 1.6dB PSPNR by the new algorithm for 
the Tree image. For the House image the gain is even larger: 1.55dB PSNR and 2.1dB PSPNR.  
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2.3.2. Comparison to the algorithm in [3] 

Another comparison is to the algorithm in [3]. The compression results for several images are displayed 

in Table 2. It can be seen that the algorithm proposed in this work always outperforms the algorithm in [3] with 

a mean gain of 0.522dB PSNR and 0.278dB PSPNR. The gain for an individual image can be as much as 2dB 

PSNR as for Baboon.  

The new algorithm is superior to the one in [3] also with respect to the execution times. This is 

elaborated in Subsection 2.4.   

2.4. Run time of the algorithm 

The run-times for the new algorithm, the algorithm in [3] as well as JPEG are shown in Table 3 for 

several image sizes. As expected, the use of estimated rates improves the run-time of the compression algorithm, 

especially for smaller images (15.7% improvement for 256x256 images, 3.5% improvement for 512x768 

images). The new algorithm is also comparable with JPEG (14% slower for 256x256 images, 6.9% slower for 

512x768 images).  

III. RATE CONTROL 
Having introduced a DCT-based color compression method that outperforms the baseline JPEG 

algorithm, it should be noted that this application does not target rate control. Since we can derive the 

expression for the optimal rates for some given image rate  as in Equation (9) and we can calculate the 

quantization tables to achieve these rates, an application for rate control can be designed. Next we describe such 

an application, based on the DCT block transform, aimed to achieve a given rate with performance higher or 

equal to JPEG. Although this algorithm employs the DCT as a CCT as well and designs the quantization tables 

for optimal rates, it codes the subbands differently: each subband (DC or AC) is coded independently using the 
size/value representation of the baseline JPEG [20]. The sizes are coded using adaptive arithmetic coding and  

 

Table 2. PSNR and PSPNR results for the new algorithm (New Alg.) and the algorithm in [3] at the same 

compression ratio (CR). 

 

  PSNR  PSPNR    

 Image  New Alg.  Alg. in [3]  New Alg.  Alg. in [3]  CR   

 

Lena  30.011  29.765  39.038  38.671  45.07   

 

Peppers  29.971  29.770  37.818  37.489  33.77   

 

Baboon  30.024  28.056  38.273  37.859  16.92   

 

Cat  30.019  29.172  40.066  39.603  21.97   

 

Sails  29.990  29.923  39.018  39.012  14.61   

 

Monarch  29.975  29.721  38.221  37.871  27.08   

 

Goldhill  29.999  29.928  40.519  40.499  13.23   

 Mean   29.998  29.476  38.993  38.715   
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Figure 4. The House and the Tree images - from top to bottom: original, compressed by JPEG and 

compressed by the new algorithm.  

PSNR for the House image: 29.45dB for JPEG and 30.98dB for the new algorithm. PSPNR: 38.01dB and 

40.10dB, respectively, at CR=45.15.  

PSNR for the Tree image: 28.73dB (JPEG) and 29.98dB (new algorithm). PSPNR: 37.99 and 39.56dB, 

respectively, at CR=15.36. 

Table 3. Run-times in sec. for the algorithm in [3], the new algorithm and JPEG. 

Image Size  The alg. in [3]  New Alg.  JPEG   

  1.53  1.29  1.13   

  7.73  7.46  6.98   

 

the values as variable length integer (VLI) codes similar to JPEG.For the decoder to be able to reconstruct the 

sizes, the numbers of appearances (or counts) of each size are sent with the compressed image data to the 

decoder. The number of bits for these counts as well as the number of bits for the quantization tables (adaptively 

designed for the image) have to be taken into account. This bits overhead can be considerably reduced, 

especially at high compression ratios by sending the quantization steps and counts only for the active subbands 

(with optimal rates  in addition to bit vectors signifying which subbands are active  This requires, 

however, calculating the optimal rates as described below. 

The stages of the rate control algorithm are:  
1. Apply the CCT (here DCT) to the RGB color components of a given image and obtain new color 

components .  

2. Apply the 2D block-DCT to each color component  (using block size of  if comparison to JPEG is 
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of interest).  

3. Calculate the optimal rates corresponding to the given total rate  (using (9)). Assume here that no bits are 

sent for the quantization steps and the counts (of the arithmetic coding) to find the rate for the actual 

compressed image data.  

4. Using the optimal rates of the previous stage, find the number of active subbands in each color component 

and calculate the number of bits needed both for the quantization tables and the counts. Then recalculate the 

rate for the actual image data and find the optimal subband rates accordingly.  

5. Quantize each subband of each color component independently using uniform scalar quantizers with 

quantization steps designed as in Subsection 2.2.  

6. Encode the quantized DCT coefficients in each subband similarly to JPEG’s coding of the DC subband, but 

without using delta modulation. Delta modulation can be used, but for the DC subband only (see below). 

Each coefficient is split into size and value representation when the sizes are coded arithmetically and 

contain the information of the number of bits in the coefficient while the following values are coded by 
VLIs (1’s complement). For applications where rate control precision is of primary concern, we allow 

optional non differential coding of the DC subband of the maximal energy color component (denoted ). 

Such coding requires more bits, however, it allows achieving the required total rate more accurately, 

especially at high compression ratios. The decision whether to code the DC subband differentially or not is 

made according to a comparison between the sum of the real rates  allocated to the subbands of   and 

the sum of optimal rates . The decision can be made according to 
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        where  is a constant close to 1, e.g., 0.98.  

The image data bitstream at the end of the algorithm consists of the bit vectors signifying the active 

subbands, the quantization tables, the arithmetic coding counts and the encoded DCT coefficients (in addition to 

potential headers, etc.). Note that optional down-sampling of some of the color components (usually  and 

) can be performed between Stages 1 and 2.  

3.1 Rate-control Results 

When considering, for example, images of size 256x256 and a target compression ratio (CR) of 30 (or 

total rate of 0.8bpp), the results of the algorithm are shown in Table 4. Here the accuracy of the algorithm is 

measured and a comparison of its performance to JPEG is given in the PSNR and PSPNR sense. The rate-

control algorithm succeeds to achieve the desired compression ratio with a relative absolute error of 1.464% and 

mean of 29.995. The standard deviation is 0.524 or 1.747% of the target CR. Its performance is superior to 
JPEG with a gain of 0.360 dB PSNR and 1.129 dB PSPNR on average.  

Note that all the relative measures are relative to the target CR, i.e., the relative absolute error for example is the 

ratio of L1 norm of the error and the CR value.  

3.1.1. Accuracy of the algorithm 

When applying the algorithm to the same images for other compression ratios, the results are given 

graphically in Figs. 5 and 6. It should be noted that the algorithm is more accurate at medium compression 

ratios: 20-110 where the mean relative error is approximately 1% or less, the mean relative absolute error is in 

the range 1-2% and the relative standard deviation (STD) is below 2% for compression ratios below 100, and 

grows up to 2.6% above it. At high compression ratios (above 110) and at low ratios (below 20) the accuracy 

decreases. Note that for each value of target CR the mean relative error describes the shift of the mean CR 

relative to the target value (in % of this value) while the relative STD describes the width of the data distribution 
around the mean CR. Finally, the absolute relative error is a measure of the actual mean error when all errors are 

absolute value averaged.  

 

The main difficulty at low rates is that there are many active subbands and since the size/value coding 

of each subband usually achieves slightly greater rates than plain entropy coding, the results are that the more 

subbands are coded the greater the error in the bit rate. At high rates the number of active subbands becomes 

small and therefore the decision how the C1 DC subband is coded becomes of greater importance: if the DC 

subband is coded differentially, the resulting compression will be greater than the target CR since the DC rate 

will be smaller than the subband’s (non-differential) entropy. On the other hand, coding the DC non-
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differentially results in a greater number of bits than needed for the DC information and often in a compression 

ratio that is too low. If the algorithm’s complexity is of lower priority than the rate-control accuracy, both 

options for the DC subband coding can be always tested and the more precise one chosen. Then the precision at 

high rates improves as demonstrated in Table 5 - it is higher in terms of (lower) mean relative absolute error and 

also the CRs distribution is narrower in terms of standard deviation. Note that the original algorithm usually 

reduces the complexity (in terms of run-time and storage capacity)  by running the differential DC coding and 

checking the condition in (21). 

 
 Figure 5. The mean CR for the set of images in Table 4 vs. the target CR. The solid line describes the 

target CR, while the points describe the achieved mean CR and the error bars are of standard deviation 

(STD) size.  
 

 
 

Figure 6. Accuracy measures for the rate-control algorithm: mean relative error (%), mean relative 

absolute error (%) and relative standard deviation (%). 

Table 4. Results for the rate-control algorithm on medium size images for target CR=30. From left to 

right: The obtained CR, Relative Error, PSNR for the new algorithm, PSNR for JPEG at the same CR 

and same columns for PSPNR. 

 Image CR Rel. Err.(%) PSNR PSPNR 

    New Alg. JPEG New Alg. JPEG 

 

Lena 30.586 1.952 31.921 31.925 40.824 39.950 

 

Peppers 29.785 -0.718 29.982 29.271 37.696 36.515 

 

Baboon 30.860 2.868 24.553 24.462 35.226 33.766 

 

Cat 30.291 0.970 27.052 26.881 37.749 36.662 

 

Sails 29.500 -1.667 26.311 25.595 35.879 33.923 
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Tulips 29.482 -1.727 25.826 24.987 33.784 32.431 

 

Monarch 29.581 -1.395 28.287 28.228 36.494 36.176 

 Goldhill 29.876 -0.413 24.716 24.422 36.289 35.487 

 Mean 29.995 -0.016 27.331 26.971 36.743 35.614 
 
 

Table 5. Accuracy measures for the rate-control algorithm at high values of target CR: original algorithm 

and with both DC coding options tested. 
 Original Algorithm Both DC coding options tested 

Target CR Mean Rel. Err. (%) Mean Rel. Abs. 
Err. (%) 

Rel. Std 
(%) 

Mean Rel. 
Err. (%) 

Mean Rel. Abs. 
Err. (%) 

Rel. Std (%) 

100 -0.713 2.085 2.483 0.401 1.679 2.149 

110 -0.772 2.025 2.663 0.958 1.743 2.191 

120 -1.027 2.937 3.665 0.820 2.072 2.410 

We should also note that if the application requires a compression ratio not less than a given value, as 
perhaps can be the case in mobile applications, only differential coding should be used. In any case the 

algorithm’s results are comparable to [18] especially at the middle range of compression ratios.  

3.1.2. Performance (PSNR and PSPNR) of the algorithm 

Fig. 7 describes the performance gain of the rate-control algorithm vs. JPEG in the PSNR and PSPNR 

senses. Since the algorithm is based on the optimal rates, it indeed outperforms JPEG. In cases of CR = 10 the 

reconstructed images for both our algorithm and JPEG are visually identical to the original one (e.g. when the 

) and thus of limited interest.  
 

 

Figure 7.  PSNR and PSPNR differences between the rate-control algorithm and JPEG vs. target CR. 

Along the whole range of values checked the new algorithm outperforms JPEG. 

IV. RATE-CONTROL OF VIDEO SEQUENCES 
Consider a group of frames (GOF) of a video sequence, to be encoded similarly to the MPEG standard 

[17]. Here, instead of applying JPEG to the frames or their prediction errors we would like to use the DCT-

based compression technique of [3]. We assume for simplicity that the GOF structure is: I,P,P,P,... where I 
denotes an image coded using intra-frame techniques only and P stands for an image coded using the inter-frame 

correlation with a previous image. The correlation can be exploited using standard motion estimation. Suppose 

that the frames are to be coded at a given rate  in bits/sec. We consider  frames of the GOF and assume that 

these  images are allocated some total number of bits denoted by . Denoting by  the MSE of the 

reconstruction of frame , the average MSE of the frames is simply:  

 

 

(22) 
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Here we have used (3) for  denoting by  and  the variance and rate, respectively, of 

subband  of color component  of frame . If frame  is an I-frame, the variances are simply of its DCT 

subbands. However, if we consider a P-frame, then the variances are of the DCT subbands of the image of 

prediction errors. In any case what is important is that the MSE of the reconstruction of the frame is only the 

result of its DCT-based compression and not the prediction method used (the motion estimation). The prediction 

technique affects only the magnitude of the variances . Note that  stands here for the CCT as usual ( 

for example, the RGB to YUV transform or the DCT). Substituting  and  for the DCT subband 

transform and slightly rewriting (22) we have:  

 

 

(23) 

Similarly, the rate constraint  for the  frames can be written as:  

 

 

(24) 

where here again we have used  of the DCT transform. Considering (23) and (24), we conclude that the 

problem is similar to the case of still images. Assume for a moment that each color component has  subbands 

instead of , and that these subbands have variances  and rates  ( , 

). Then finding the optimal rates allocation for these subbands will give us the subband rates 

allocation for our  frames. Here we can see the significance of the choice of . If we take a higher value for  

we can expect better performance of the rate-control algorithm since we will be able to allocate the bits budget 

more flexibly. If, for example, one frame is coded with a small number of bits, its ’spare’ bits can be allocated to 

a greater choice of other frames. However, it leads to a more complicated optimization problem since there are 

 subbands to consider. Similarly, a smaller value for  reduces the order of the optimization problem, 

however, it also reduces the flexibility of the bits allocation.  

Using the same algorithm of Section 3 produces the results described in the next subsection.  

4.1. Video rate-control results 

We consider a CIF (Common Intermediate Format) color video sequence of  spatial 

resolution at the frame rate of 25 frames/sec. We would like to encode the video at 1.055 Mbit/sec (compression 

ratio of 55). Original and reconstructed frames for the video sequence "Hall Monitor" are presented in Fig. 8. 

We consider here a GOF starting at frame 100 of the sequence and show the first 4 frames in the GOF. The  is 

chosen to be 5. The rate is 1.073 MBit/sec with an error of  relative to the desired one. The motion vectors 

have used  of the total bits budget.   
 

V. CONCLUSIONS 
With the introduction of a Rate-Distortion model for color image compression, it has become possible 

to optimize subband transform coders both in the preprocessing stage and in the encoding stage itself. The 
optimization process leads to the use of the DCT as a color component transform in the preprocessing stage (in 

addition to its role in subband coding) and provides optimal rates allocation for the coding. These rates can be 

then used to design optimal quantization steps [12]. We have shown that the quantization stage can be further 

optimized by applying a Laplacian model to the distribution of the DCT coefficients. This model allows for 

efficient initialization and faster calculation of the optimal steps by estimating the subband entropies, thus 

reducing the run-time of the algorithm compared to the use of real entropies, as well as improving the 

compression performance in terms of PSNR and PSPNR. We have also presented an algorithm for optimized 

image coding with rate-control. This algorithm can be used to achieve a desired compression ratio and for 

controlling the bit-rate or bandwidth of video transmission. The presented simulations demonstrate that the 

proposed algorithms outperform JPEG, both visually and quantitatively. Our conclusion is that based on the 

newly introduced Rate-Distortion model, optimized compression algorithms can be designed with compression 
results superior to presently available methods.  
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Figure 8. Original and reconstructed frames 100-103 of the Hall Monitor sequence. PSNR = 35.99dB, 

34.23dB, 33.90dB and 33.41dB for frames 100, 101, 102 and 103 respectively. 
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