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I. INTRODUCTION 
The dynamic equation in structural dynamicsis given by Fullard(1980) as in equation (1). 
{F(t)} = [M]{X11} + [C]{X1} + [K]{X} --------------------  (1) 

 

where {F(t)} is the time-dependent loading vector; [M] is the mass matrix; {X1} and {X11} are the first and 

second time derivatives of the response vector,{X}; [C] is the damping matrix; and [K] is the stiffness matrix. 

For the case of free vibration in nature where {F(t)} = [c] = 0, the dynamic equation reduces to equation (2). 

[M]{X11} + [K]{X}  = 0                              ---------------------  (2)     
 

When a static stability case is considered,the equation further reduces to equation (3). 

{F} = [K - Kg]{X}                                       ---------------------  (3)     
 

Where K is the material stiffness and Kg is the geometric stiffness. {F} is the vector of bending forces (shear 

force and bending moment). The continuum (beam or plate) can bucklein cases of axial forces only with no 

bending forces; the equation becomes as written in equation (4). 
 

0 = [K - Kg]{X}                ---------------------  (4) 
 

Equation (2) is used in finding the natural frequencies in structural dynamics, while equation (4) is used to 

determine the buckling loads in structural stability. The solutions in both cases are called eigenvalue or 

characteristic value solutions. 
 

 In structural mechanics, shape functions are usually assumed to approximate the deformed shape of the 

continuum. If the assumed shape function is the exact one, then the solution will converge to exact solution. The 

stiffness matrix [K] is formulated using the assumed shape function. In the same way, the mass matrix [M] and 

the geometric stiffness matrix [Kg] will be formulated. The mass matrix and the geometric stiffness matrix 

formulated in this way are called consistent mass matrix and consistent geometric stiffness matrix respectively 

(Paz, 1980 and Geradin, 1980). 

Abstrct: 
There are many methods of solving eigenvalue problems, including Jacobi method, 

polynomial method, iterative methods, and Householder’s method. Unfortunately, except the 

polynomial method, all of these methodsare limited to solving problems that have lump mass matrices. 

It is difficult to use them when solving problems that have consistent mass or stiffness matrix. The 

polynomial method also becomes very difficult to use when the size of the matrix exceeds 3 x 3. There 

is, therefore,a need for a method that can be used in solving all types of eigenvalue problems for 

allmatrix sizes. This work provides such a method by the application of matrix iterative-inversion, 

Iteration-Matrix Inversion (I-MI) method,consisting in substituting a trial eigenvalue, λ into (A – λB) = 

0, and checking if the determinant of the resultant matrix is zero. If the determinant is zero then the 

chosen eigenvalue is correct; but if not, another eigenvalue will be chosen and checked, and the 
procedure continued until a correct eigenvalue is obtained. A QBASIC program was written to 

simplify the use of the method. Five eigenvalue problems were used to test the efficiency of the method. 

The results show that the newly developed I-MI method is efficient in convergence to exact solutions of 

eigenvalues. The new I-MI method is not only efficient in convergence, but also capable of handling 

eigenvalue problems that use consistent mass or stiffness matrices. It can be used without any limit for 

problems whose matrices are of n X n order, where 2 ≤ n ≤ ∞. It is therefore recommended for use in 

solving all the various eigenvalue problems in structural engineering. 
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Owen (1980) transformed equation (2) to into the form expressed in equations (5a) and (5b). 

[K]{X} = ω2[M]{X}---------------------  (5a)    

([K] – ω2[M]){X} = 0             ---------------------  (5b)     
 

It is easy to determine the eigenvalues of equations (4) and (5) when the size of the square matrix is not more 
than 3 x 3. Geradin (1980) noted that significant amount of computational effort is required for the eigenvalue 

problems using consistent mass matrix. Because of this difficulty, many analysts preferred using lump mass 

matrix to consistent mass matrix. The works of Key and Krieg (1972) and Key (1980) showed that the 

difference between the solutions from lump mass and consistent mass is very significant. Since the difference in 

the solutions is high, analystsneed not stick to the use of lump mass just because it is easy to solve.Sheik et 

al.(2004) recommended efficient mass lumping scheme to form a mass matrix having zero mass for the internal 

nodes. This, according to them, would help facilitate condensation of the structural matrix. The use of lump 

mass matrix will transform equation (5) into the form written in equation (6). 

 ([K] – ω2m[I]){X} = 0        ---------------------  (6)    

where [I] is the identity matrix. Equation (6) can simply be written as shown in equation (7). 

 (A – λI)X = 0    ---------------------  (7)   
 

where A is a square matrix, λ is a scalar number called eigenvalue or characteristic value of matrix A, I is 

identity matrix, and X is the eigenvector (Stroud, 1982 and James, Smith and Wolford, 1977). There are many 

methods of solvingequations (6) and (7). Some of the methods include Jacobi method, polynomial method, 

iterative methods, and Householder’s method (Greenstadt, 1960; Ortega, 1967; and James, Smith and Wolford, 

1977).Iterative methodsarebased on matrix–vector multiplication. Some of the iterative methods include power 

method, inverse iteration method (Wilkinson, 1965), Lanczos method (Lanczos, 1950), Arnoldi method 

(Arnoldi, 1951; Demmel, 1997; Bai et al., 2000; Chatelin, 1993; and Trefethen and Bau, 1997), Davidson 

method, Jacobi-Davidson method (Hochstenbach and Notay, 2004; and Sleijpen and van der Vorst, 1996), 

minimum residual method, generalized minimumresidual method(Barrett et al., 1994), multilevel 

preconditioned iterative eigensolvers (Arbenz and Geus, 2005), block inverse-free preconditioned Krylov 

subspace method (Quillen and Ye, 2010), Inner-outer iterative method (Freitag, 2007), and adaptive inverse 
iteration method (Chen, Xu and Zou, 2010). Unfortunately, except the polynomial method, all of these 

methodscan only be used for equations (6) and (7); they cannot handle equations (4) and (5); andas previously 

noted, Polynomial method also becomes very difficult to use when the size of the matrix exceeds 3 x 3.  

 

There is, therefore,a need for a method that can be used in solving eigenvalue problems of equations (6) and (7) 

as well as equations (4) and (5) for any size of matrix.This work provides such a method by the application of 

matrix iterative-inversion, consisting in substituting a trial eigenvalue, λ into (A – λB) = 0, and checking if the 

determinant of the resultant matrix is zero. If the determinant is zero then the chosen eigenvalue is correct; but if 

not, another eigenvalue will be chosen and checked, and the procedure continued until a correct eigenvalue is 

obtained. 
 

II. MATRIX ITERATIVE-INVERSION 
Trivial solutions will exist for both equations (4) and (5)if and only if {X} = 0. To avoid trivial solutions, 

equations (4) and (5) will respectively satisfy equations (8) and (9). 

 

 
Equations (8) and (9) can simply be written as in equation (10). 

 

 

 
The inverse of matrix [C] is denoted as [C]-1. From elementary mathematics, 

 
 

Where [D] is the matrix of the cofactors of the elements of . The implication of equation (13) is that 
the inverse of matrix C, [C]-1 will be infinity (and this does not exist) as long as its determinant is equal to zero. 
The approach used in this work is to deal with the inverse matrix because it is easier to evaluate the inverse of a 

matrix using row operation rather than the determinant of the same matrix. The iteration process can start 

withtaking the value of λ as zero and checking if the inverse [C]-1 exists or not.  If the inverse exists then zero is 

not the eigenvalue; λ will then be increased (say by 0.1) and used to test if the inverse of C matrix exists. If the 

inverse still exists, λ will again be increased and the process repeated until the inverse matrix ceases to exist as it 



Application Of Matrix Iterative-Inversion… 

www.ijceronline.com                                                     ||April||2013||               Page 19 
 

becomes infinity. The value of λ at which the inverse matrix becomes infinity is the lowest eigenvalue.The next 

eigenvalue will be a slight increment of this lowest eigenvalue, say λ+0.1.  

 

III. QBASIC PROGRAM FOR THE METHOD 
A simple user-friendly and interactiveQBASIC program which requires no special training to be 

usedwas written in order tosimplify the use of this method (see appendix to this work).The program was used to 

test the following problems. 

 

[1]  (Stroud, 1982) 

 

[2]  (James, Smith and Wolford, 1977) 

 

[3]  

 

[4]  

 

[5]  

 

IV. RESULTS, DISCUSSION, AND CONCLUSION 
The resulting lowest eigenvalues obtained for the above five problemsby use of the developed Q 

BASIC program are as shown in Table 1. When these lowest eigenvalues are substituted into their respective 

problems, and the determinants of the problems calculated, the resulting values of the determinants are as shown 

in Table 2. It is a common knowledge that the determinant of an eigenvalue matrix is zero when the exact 

eigenvalue is substituted into it. Hence, if the eigenvalues in table 1 were exact or approximate eigenvalues of 

matrices 1, 2, 3, 4 and 5, the determinants would be exactly or approximately equal to zeroupon substituting the 
eigenvalues into the matrices.Table 2 shows that the determinants from the Iteration-Matrix Inversion (I-MI) 

method areapproximately zero.It can also be seen from table 2 that the determinant for matrix 2 from power 

method (James, Smith and Wolford, 1977) is far from being zero. The results show that the newly developed I-

MI method is efficient in convergence to exact solutions of eigenvalues. The new I-MI method is not only 

efficient in convergence, but also capable of handling eigenvalue problems that use consistent mass or stiffness 

matrices.It can be used without any limit for problems whose matrices are of n X n order, where 2≤ n ≤ ∞. It is 

therefore recommended for use in solving all the various eigenvalue problems in structural engineering. 
 

Table 1: Results of Eigenvalue Problems 

 

Problem 

Eigenvalues from Matrix Iterative-Inversion method 
1st Eigenvalues  

from Reference  1st 

eigenvalue 

 2nd 

eigenvalue 

 3rd 

eigenvalue 

 4th 

eigenvalue 

1 1 2 3   11 

2 0.031 0.2618 0.5049   1.982 

3 15.113 15.8732 63.2421   No reference 

4 10.089 10.189 10.289   No reference 

5 47.2399 47.9867 116.9181 117.0181 No reference 

 

1:(Stroud, 1982);  2: (James, Smith and Wolford, 1977) 
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V. APPENDIX (VISUAL BASIC PROGRAM) 
Private Sub STARTMNU_Click() 

ReDim AA(40, 100, 100), AANS(100, 100), ANS(100, 100) 

ReDim MROW(100), MCOLUMN(100), MM(40, 100, 100), MMANS(100, 100), EMMANS(100, 100) 

ReDim INVM(100, 200), INVAM(200, 200), INVRM(200, 200), INVABM(100, 200), A(200, 200), B(200, 

200) 

Dim VROW As Variant, VCOLUMN As Variant 

Cls 

FontSize = 11: OWUS = 0 

2220    OWUS = 0: OW = 1 

' THIS AREA IS FOR MATRIX INVERSION 
'HERE IS THE INPUT FOR INVERSION 

10      VROW = InputBox("WHAT'S THE NO. OF ROWS OF THIS MATRIX ?"): NR = 1 * VROW 

If VROW = 0 Then Notice = InputBox("IT IS NOT POSSIBLE", "ROW OF MATRIX CAN'T BE ZERO", 

"Click O.K. for me"): GoTo 10 

20      VCOLUMN = InputBox("WHAT'S THE NO OF COLUMNS OF THIS MATRIX?") 

If VCOLUMN = 0 Then Notice = InputBox("IT ISNOT POSSIBLE", "COLUMN OF MATRIX CAN'T BE 

ZERO", "Click O.K. for me"): GoTo 20 

If VROW <> VCOLUMN Then MsgBox (IMPOSSIBLE), , "IMPOSSIBLE" Else GoTo 2221 

2221    For X = 1 To VROW 

For Y = 1 To VROW 

A(X, Y) = InputBox([Y], [X], "ENTER A") 
Next Y 

Next X 

For X = 1 To VROW 

For Y = 1 To VROW 

B(X, Y) = InputBox([Y], [X], "ENTER B") 

Next Y 

Next X 

T = 0 

22555   For I = 1 To VROW 

For J = 1 To VCOLUMN 

INVM(I, J) = A(I, J) - T * B(I, J) 

Next J 
Next I 

'THE INVERSE IS CARRIED OUT HERE 

' THE PREAMBLE OF INVERSION 

For I = 1 To VROW 

For J = 1 To 2 * VCOLUMN 

INVAM(I, J) = 0 

Next J 

Next I         

For I = 1 To VROW 
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For J = 1 To 2 * VCOLUMN 

INVAM(I, J) = INVAM(I, J) + INVM(I, J) 

Next J 

Next I 

For I = 1 To VROW 

INVAM(I, I + VCOLUMN) = INVAM(I, I + VCOLUMN) + 1 

Next I 
For I = 1 To VROW 

For J = 1 To VCOLUMN 

INVABM(I, J) = INVAM(I, J) 

Next J 

Next I 

ZZ = 1  

'THIS IS THE PLACE FOR INVERSION PROPER 

For I = 1 To VROW 

OWUSS = INVAM(I, I) 

3333    If OWUSS > -0.0001 And OWUSS < 0.0001 Then GoTo 2222 

For J = 1 To 2 * VCOLUMN 
INVAM(I, J) = INVAM(I, J) / OWUSS 

Next J 

For J = 1 To VROW 

If (J = I) Then GoTo 77777 

OWUSS = INVAM(J, I) 

For K = 1 To 2 * VCOLUMN 

INVAM(J, K) = INVAM(J, K) - OWUSS * INVAM(I, K) 

Next K 

77777   Next J 

Next I 

'  If T > 40 Then GoTo 1111111 

T = T + 0.0001 
GoTo 22555 

2222    ' HERE IS THE PLACE INTERCHANGE OF ROWS 

If I + ZZ = 3 * VROW Then GoTo 1111111: 'MsgBox (IMPOSSIBLE), , "THIS MATRIX HAS NO 

INVERSE": 

For W = 1 To 2 * VCOLUMN 

INVRM(I, W) = INVAM(I, W): INVRM(I + ZZ, W) = INVAM(I + ZZ, W) 

INVAM(I, W) = INVRM(X + ZZ, W): INVAM(I + ZZ, W) = INVRM(I, W) 

Next W 

OWUSS = INVAM(I, I) 

If OWUSS = 0 Then ZZ = ZZ + 1: GoTo 6666 

Z = 1: GoTo 3333 
6666    For W = 1 To 2 * VCOLUMN 

INVRM(I, W) = INVAM(I, W): INVRM(I + ZZ, W) = INVAM(I + ZZ, W) 

INVAM(I, W) = INVRM(I + ZZ, W): INVAM(I + ZZ, W) = INVAM(I, W) 

Next W 

If I + ZZ = 3 * VROW Then: GoTo 1111111: 'MsgBox (IMPOSSIBLE), , "THIS MATRIX HAS NO 

INVERSE": 

ZZ = ZZ + 1: GoTo 2222 

'this is the end of inversion 

1111111 

Print "RESULT" 

Print "   H  =  "; Format(T, "0.###0"); 
If OW = NR Then GoTo 1111112 

OW = OW + 1: T = T + 0.1 

GoTo 22555 

1111112 

WWW = InputBox(" Press OK or Cancle to Stop") 

End Sub 
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