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I. INTRODUCTION AND STATEMENT OF RESULTS 
Regarding  the  zeros of a  polynomial , Jain [2] proved   the  following results: 
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In this paper, we prove the following results: 
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Remark 1: Taking 0  in Theorem 1, we get the following result: 
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This result was earlier proved by Roshan Lal et al [4] . 

If the coefficients are positive in Theorem 1, we have the following result: 
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If the coefficients of the polynomial P(z) are complex, we prove the following result: 

Theorem 2:  Let  
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Remark 2: Taking 0  in Theorem 2, it reduces to Theorem B. 

Remark 3: It is easy to see that 
3

K <1. 

Next, we prove the following result on the zeros of analytic functions : 
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Remark 4: Taking 0 , Theorem 3 reduces to the following result: 
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Cor.3 was earlier proved by Roshan Lal et al [4]. 

 

II. LEMMA 

For the proofs of the above results , we need the following lemma due to Govil and Rahman [1]: 
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III. PROOFS OF THE THEOREMS 
3.1 Proof of Theorem 1: Consider the polynomial 
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it follows from (1) and (2) that 
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Hence, by Rouche’s theorem, )( z  and  )()( zz    i.e. F(z) have the same number of zeros in Kz   
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That proves Theorem 1 completely. 

Proof of Theorem 2:  Consider the polynomial 
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