

Spectroscopic Constants & Potential Energy Function for Diatomic Molecules

^{1,}Ratikant Thakur and ^{2,}Jagdhar Mandal

^{1,2,}University Department of Physics Tilka Manjhi Bhagalpur University, Bhagalpur – 812007, Bihar, India

Abstract

The interionic interaction potential energy functions consisting of an attractive term within the framework of 'effective charge model along with a short range repulsive interaction (SRRI) term incorporating the near values of molecular state polarizability, van der Waals dipole-dipole and dipole-quadrupole interaction and repulsive interaction of the Born-Mayer, Hellmann, Varshni-shukla and Ali-Hasan types have been used to compute the dipole moment, binding energy, rotation-vibration coupling constant and vibrational anharmonicity. The values of binding energies have been calculated with and without the inclusion of polarizable terms in the interaction-energy makes significant improvement in the result. This shows the interaction model must be dependent on this effect. The obtained values are in good agreement with the observed values available in the literature. The results are capable enough to establish the reliability and superiority of the interaction models.

Keywords: - Anharmonicity constant, Binding energy, Dipole moments, dipole-dipole and dipole-quadrupole interaction constants, vdWenergies

1. Introduction

Studies of interaction potential energy function in diatomic molecules play an important role in molecular physics as well as in the problems of astrophysical importance [1].Recently there have been several investigations [2-5] on the potential energy function using the interaction originally due to Morse [6], Kratzer [7] and Rydberg [8]. Raghubanshi and Sharma [2] and Verma and Jha [5] have developed new potentials by combining Morse and Kratzer function and Rydberg and Kratzer functions respectively. The rotational vibrational constants α_e for diatomic molecules were calculated by using Morse-Kratzer (MK) and Rydberg-Kratzer (RK) potentials. But the results were far from satisfactory [1]. Rittner [9], for the first time proposed a polarizable ion model for alkali halide molecules by which interaction terms could be understood. Later on, Brumer and Karplus [10] modified Rittner model known as truncated Ritter model known as T-Rittner model expressed as.

The first term is the electrostatic attraction between two point charges z(+e) and z(-e) separated by a distance r and known as Coulomb interaction. The second term is the polarization energy, the third and the fourth terms are the vander waals (vdw) dipole-dipole and dipole-quadrupole interaction energy and the last term is the short range repulsive interaction (SRRI). There are various repulsive interactions proposed by different theoretical workers from time to time to describe the structure and properties of ionic molecules [11]. The repulsive interactions in logarithmic functions [12-13] are also available in literature not free from error. In the present calculations, we introduce the modification in the previous work in order to improve the interaction potential model for calculating the spectroscopic constant of diatomic molecules. Four repulsive interactions namely, Born-Mayer [14] Hellmann [15], Varshni-Shukla [11] and Ali-Hasan [16] have been chosen as the short range repulsive interaction to investigate their validity for alkali halide molecules as the results obtained from other potential models are far from errors.

A generalized formula for short range repulsive interactions can be expressed as

which takes the form of Born-Mayer repulsive potential when m=0, Hellmam repulsive potential when m=1 and Varshni-Shukla potential when m=2. Ali-Hasan empirical repulsive potential is given by

In this potential m=2 and n =3/2. In eq^{ns} (2) and (3) B, S, ρ and b are repulsive potential parameters

2. Methods Of Calculation

and

The repulsive potential parameters are determined by applying the equilibrium criteria;

 K_e is the molecular force coustant, ω_e is the equilibrium vibrational frequency, C is the speed of light in vacuum and μ_A is the reduced mass and r_e is the equilibrium interionic separation. The electronic polarizabilities of ions in the molecular state or bonded state differ from the free state polarizabilities. This is mainly due to the existence of the Coulomb interaction. Wilson and Curtis [17] have shown that the polarizability of cation remains unchanged where as that of anion decreases significantly in the bonded state due to the effect of Coulomb interaction. The molecular state polarizability of anion (α_m) is calculated from the relation based on ruffia energy analysis [18] given by

Where
$$\varphi = e/r$$

The values of E_f , known as energy parameter are calculated from free-ion polarizabilities α_f as

reported by Cocker [19] given by. $E_{n}^{2} - \frac{e^{2} \hbar^{2} n_{0}}{e^{2} \hbar^{2} n_{0}}$

where m is the electron mass, n_0 is the total no of electrons in the ions and h is the planck's constant. The molecular state polarizability of anions calculated from eq (6) and the free state polarizability of cations taken from Pauling [20] are used to estimate the dipole moment μ from the relation given by

and vdW dipole-dipole constant C and dipole – quadrupole constant D taken from Slater Kirkwood variational method [21] are expressed as

Where N_{+} and N_{-} are the effective no. of electrons in the ions and are defined by

$$N_{+} = N_{+} Z_{+}$$
(11)
 $N_{-} = N_{-} Z_{-}$ (12)

Here N is the total no of electrons in the outer two shells.

The rotation vibration coupling constant (α_{ε}) and vibrational anharmonicity consant $(\omega_{\varepsilon} x_{\varepsilon})$ are calculated from the relations [22]

where p stands for order of derivative.

The binding energy D_i per mole of a diatomic molecule is given by

 $D_i = -NU(r_e)$ (16)

Where N is the Avogadro's Number and re is the molecular equilibrium distance.

3. Results & Discussion

The molecular state polarizabilities for diatomic molecules have been calculated by using eq^{ns}. (6) and (7). They are calculated to obtain the improved values of polarization energies and vdWenegies. Table -1 shows their calculated values. The values of N₊N₋ and r_e are taken from Mandal and Ghatak [23] and Huber and Hertzberg [1]. The different potential parameters have been computed with the help of molecular equilibrium

210

||Issn||2250-3005|| (Online)

||March||2013||

equations (4) and (5). Their values have been used to calculate spectroscopic constants. The constants C and D known as dipole-dipole, dipole quadrupole van der waals interaction constants have been obtained with the help of eq^{ns} (9) and (10) given by Slater Kirkwood variational method. These values have been used in the evaluation of binding energy (D_i) and dissociation energy (D_e) .

Table – 1 Calculated values of electronic polarizablities $\alpha_1(A^{03})$ and $\alpha_2(A^{03})$, N+ and N- (total no. of

electrons in the outer two shells) and values of $r_e(A^o)$,											
Molecul	es		$\alpha_1(A^{03})$		$\alpha_2($	A ⁰³)	N+		N-	r _e	
L1F			0.036		0.7	41	3		9		
LiCl			0.034		2.2	.02	3		15		
			2.021								
LiBr			0.036		3.3	50	3		25		
			2.170			24	2		25		
L1 I			0.033		5.2	.24	3		25		
NaF			0.190		0.8	21	11		9		
1.001			1.926		010				<i>,</i>		
NaCl			0.184		2.3	72	11		15		
			2.361								
NaBr			0.182		3.5	34	11		25		
No I			2.502		5.4	55	11		25		
144 1			2.711		5.4	55	11		23		
KF			1.143		0.8	65	17		9		
			2.172								
KCl			1.078		2.4	.98	17		15		
VD.	1.062	2 680	2.667	25	2 9 2 1						
KI	1.005	5.080	1 045	23	2.021	59	17		25		
			3.048		5.0	57	17		25		
RbF			1.805		0.8	81	27		9		
			2.270								
RbCl			1.718		2.5	43	27		15		
DhD.			2.787		27	21	27		25		
RUDI			2 945		5.7	51	27		23		
Rb I			1.673		5.7	28	27		25		
			3.177								
CsF			3.154		0.8	93	27		9		
a a			2.345			24	27		1.5		
CsCl			2.989		2.5	34	27		15		
CsBr			2.900		3.7	79	27		25		
2001			3.072		5.7	.,	27		20		
CsI			2.908		5.8	80	27		25		
			3.315								

Table- 2 shows the obtained values of the dipole moments of diatomic molecules. These calculation are based on the eq(8), Column (2) of this table shows the present calculation with possible errors Column(b) and (c) denote values of dipole moments for the mentioned molecules obtained by Rittner model [9] and point ion model the experimental values of μ . have been taken from Brumer and karplus [10]. The average percentage errors obtained by us and Ali-Hasan & Shankar et al are respectively 2.79, 13.58 and 31.29. The higher percentage errors in their values may be attributed to the omission of molecular polarizablities. The values of μ obtained simply indicate the significance of molecular state polarizabities.

Table2. calculated values of dipole moments μ in debye

Molecules	Expt. (1,22)' %error	present	% error	b calculation	% error	с
LiF	6.284 19.5	5.982	4.8	5.311	15.5	7.511
LiCl	7.085 36	7.07	0.2	5.241	26	9.706
LiBr	7.226 44.2	6.967	3.6	5.406	25.2	10.422

Li I	7.429	7.0703	4.8	5.375	27.5	11.488
	54.6					
NaF	8.123 7.77	8.387	3.25	7.492	13.8	9250
N ₂ Cl	8.072	0.122	1 70	כדר ד	12.4	11 220
NaCI	0.912	9.132	1.70	1.115	13.4	11.559
	26.4					
NaBr	9.092	9.361	2.95	7.96	12.45	12.017
	24.2					
Nal	9.21	9.332	1.32	7.992	13.2	13.02
	41 36					
ŀΕ	8 558	8 383	2.04	8 074	5.6	10/132
KI	0.550	0.303	2.04	0.074	5.0	10.432
WO1	21.8	10.200	1 47	0 101	10.2	10 000
KCI	10.238	10.389	1.47	9.181	10.3	12.809
	25.1					
kBr	10.603	10.68	0.73	9.575	9.69	13.549
	27.78					
KI	11.05	11 199	1 35	9 921	13.3	14 369
IXI	22 47	11.177	1.55).)21	15.5	14.507
DLE	52.47 9.512	0.250	1.0	0.001	6	10.002
KDF	8.513	8.339	1.8	8.001	0	10.902
	18.1					
RbCl	10.483	10.745	2.49	9.469	9.8	13.885
	32.3					
RbBr	-	11.131	-	-	-	14,144
nobi	_	111101				
DH	-	11 720				15 250
KÜI	-	11.729	-	-	-	15.239
a 5	-				•	
CsF	7.489	7.723	3.12	7.278	2.8	11.268
	50.4					
CsCl	10.858	10.782	0.69	9.364	13.7	13.957
	28.5					
CsBr	-	11 322	_	_	_	14 754
C3D1	-	11.322	-	-	_	14.754
C I	-	10 754	11.1	10 (1	10.0	15 001
Csl	12.1	10.756	11.1	10.61	12.3	15.921
	31.57					
Average 0/ davi	ation		2 702520		12 56119	
Average % devi			2.193329		15.50116	
	30.70882					

Spectroscopic Constants & Potential Energy...

Table- 3 (a) & 3 (b) Show the calculated values of binding energy (D_i) of molecules with and without the inclusion of molecular polarization energy. The calculation have been done for all the four short range repulsive interaction models. The average percentage errors in both cases for all the models are also very revealing. BM and VS interaction models give better results of binding energy in comparision to HM & AH models. The result indicates that the BM & VS interaction models are to be considered to be exact potention energy functions for the prediction of binding energy of these molecules. Results show that BM>VS>HM>AH. Thus the polarization energy has to be taken a reality for the evaluation of binding energy for halide molecules. Table-3a Calculated Values of Binding Energy (Di) in K. Calorie/mole (With Polarization)

Molecules	Expt	B.M		Hell.		V.S.		A & H.	
	.(1,22)	With	%Error	With	%Error	With	%Error	With	
	%Error								
LiF	184.1	199.95	8.6	197.8	7.4	197.9	7.49	199.8	8.5
LiCl	153.3	159.6	4.1	157.1	2.4	160.3	4.5	161.45	5.2
LiBr	147.4	157.5	6.8	156.6	6.2	156.6	6.2	157.8	7.1
LiI	138.7	147.6	6.4	146.9	5.9	146.9	5.9	147.8	6.5
NaF	153.9	156.1	1.4	155.3	0.9	154.3	0.26	156.2	1.89
NaCl	132.6	133.8	0.9	134.8	1.6	132.8	0.15	134.1	1.13
NaBr	127.7	129.13	1.1	128.7	0.7	128.25	0.73	129.3	1.25
NaI	120.3	122.7	1.9	122.5	1.8	113.09	5.9	124.48	3.4
KF	139.2	152.4	9.5	151.9	8.6	151.5	8.8	167.4	20.2
KCl	118	128.4	8.8	123.2	4.4	134.4	13.8	133.4	13
KBr	113.6	121.8	7.2	110.5	2.7	110.4	2.8	111.24	2.07
KI	106.1	108.2	1.9	107.9	1.7	107.6	1.4	124.4	17.2
RbF	133.6	142.7	6.8	142.2	6.4	141.9	6.2	156.3	16.9

212

									0.
RbCl	113.4	114.2	0.7	114	0.4	113.6	0.17	124.7	9.96
RbBr	109	109.96	0.8	111	1.9	110.75	1.6	121.8	11.7
RbI	101.9	104.2	2.2	104.7	2.7	104.5	2.5	114.9	12.7
CsF	130.5	147.9	1.3	147.6	13.1	147.2	12.7	151.1	18.7
CsCl	112.3	114.45	1.9	114.1	1.6	113.95	1.46	111.9	.35
CsBr	130.5	109.4	16.1	109.1	9.65	109.1	9.6	107.6	17.6
CsI	101.1	104.06	2.9	103.9	2.8	102.2	1.1	100.6	.49
AVERAG	E% DEVIA	TION 4	1.565		9.475		4.658		
	13.642								

Spectroscopic Constants & Potential Energy...

Table-3b Calculated Values of Binding Energy (Di) in K. Calorie/mole (Without Polarization)

Molecules	Expt(1,22)	B.M Without	%Error	Hell. Without	%Error	V.S. Without	%Error	A & H. Without	
LiF	%Error 184.1 2.7	179.2	2.6	177.2	3.7	177.7	3.5	179.2	
LiCl	153.3 10.6	138.2	9.8	139	9.3	138.7	9.5	137	
LiBr	147.4 9.2	134.7	8.6	133.7	9.3	131.6	10.7	133.9	
LiI	138.7 12.1	146.9	2.9	121.2	12.6	121.1	12.6	121.9	
NaF	153.9	143.9	65	143.2	69	142.2	72	144 1	6
NaCl	132.6 9.12	128.8	2.9	121.24	8.5	122.8	7.4	120.5	Ū
NaBr	127.7 10.94	113.48	11.1	113.1	11.4	112.59	11.9	113.72	
NaI	120.3 10.83	105.5	12.3	105.3	12.4	95.36	20.7	107.26	
KF	139.2 9.5	137.5	1.2	137.1	1.5	136.6	1.86	152.5	
KCl	118 3.2	111.7	5.3	111.5	5.5	122.8	4.06	121.8	
KBr	113.6 12.9	110.5	2.7	98.2	13.6	98.04	13.6	98.9	
KI	106.1 5.18	95.4	10.1	95.1	10.36	94.76	10.6	111.6	
RbF	133.6 4.4	126.1	5.6	126.1	5.6	125.2	6.3	139.5	
RbCl	113.4 0.32	102.6	9.5	101.3	10.6	101.9	10.1	113.03	
RbBr	109 5.32	98.2	1.1	99.2	8.9	98.9	9.26	103.6	
RbI	101.9 1.66	92.94	9.3	93.5	8.2	93.2	8.5	103.6	
CsF	130.5 4.99	125.9	3.5	125.6	3.7	125.13	4.11	137.02	
CsCl	112.3	101.6	9.5	101.3	9.7	101.2	9.8	112.3	0
CsBr	130.5	96.9	25.7	96.5	26.1	91.1	30.1	130.5	0
CsI	101.1	92.1	8.9	91.92	1.1	89.68	11.2	101.1	0
AVERAGE	E% DEVIATI 5.948	ON	7.455		8.948		10.145		

Table 4 & 5 present the calculated values of α_e and $\omega_e x_e$ for halide molecules in the case of well-known four repulsive interaction models along with their experimental values. From the table it is evident that α_e for BM, HM, VS & AH are respectively 8.4, 10.21, 7.57, 6.28. The order of suitability of the models are

213

||Issn||2250-3005|| (Online)

||March||2013||

||www.ijceronline.com||

AH>VS>BM>HM. Similarly the percentage deviations of $\omega_e x_e$ for the above models are 5.57, 7.81, 6.27, 5.71 for BM, HM, VS & AH. Here VS and AH models give still more approximate values of anharmonicity. The small discripency between the observed and experimental values of the calculated quantities may be attributed due to overlap of electron clouding between anion & cations and hence the dependence of potential model on interionic separations.

Molecule	sExpt.(1,2)	2)	B.M	%Error	Hell.	%Error	V.S.	%Error	A&H	%Error
LiF	202.7	187.2	7.6	198.7	1.97	211.9	4.5	196.9	2.8	
LiC1	80	87.6	9.5	91.5	14.3	97.7	2.1	74.6	6.7	
LiBr	56.4	66.7	18.2	71.5	26.7	72.5	8.5	87.6	5.3	
LiI	40.9	44.4	8.5	54.7	33.7	53.3	3.3	44.8	9.5	
NaF	45.6	47.1	3.2	34.08	25.2	48.3	5.9	36	21	
NaCl	16.3	15.5	4.9	16.4	0.6	17.2	5.5	15.4	5.5	
NaBr	9.4	9.1	3.19	9.5	1.06	9.5	1	10.8	4.8	
Nal	6.47	6.21	4	6.45	0.31	6.71	3.7	6.3	2.6	
KF	28.3	23.28	17.7	22.5	10.9	24.6	13	23.7	16.2	
KCl	7.89	9.8	24.2	10.2	9.8	7.38	6.4	4.3	5.5	
KBr	4.05	4.03	0.5	5.1	5.9	3.75	7.4	3.5	3.5	
KI	2.68	3.52	3	3.5	0.5	3.52	1.3	2.88	1.4	
RbF	15.2	14.9	1.9	15.4	1.3	16.1	5.9	15.9	4.6	
RbCl	4.53	4.42	2.48	4.18	7.6	4.76	5	3.54	1.8	
RbBr	1.86	1.89	1.61	1.98	6.4	2.16	6.1	1.86	0	
RbI	1.09	1.04	4.58	1.06	2.7	10.4	4.5	1.05	3.6	
CsF	16.8	14.19	15.5	14.05	16.3	14.04	16.4	14.1	16	
CsCl	3.39	3.64	7.3	3.75	10.6	4.2	23.8	3.6	0.61	
CsBr	1.24	1	19.3	1.41	13.7	1.03	16.9	1	9.3	
CsI	0.68	0.6	11.7	0.78	14.7	0.61	10.2	0.51	5	
AVERAC	Æ	% DEVIA	TION	8.443		10.212		7.57		6.2855

Table-4 Calculated Values of Rotational constant α_e (in 10⁻⁴ cm)

Table- 5 Calculated values of Vibrational anharmonitity constant $\omega_e x_e (in \ cm^{-1})$

Molecules	Expt.	B.M	%Err	or Hell.	%Err	or V.S.	%Erre	or A&H	% Error
				(1,22	2)				
LiF	8.1	8.3	0.24	8.17	0.86	7.4	8.6	8.46	4.4
LiCl	4.5	5.11	13.5	5.22	16	5.77	8.2	2.56	31
LiBr	3.53	4.54	8.6	2.12	9.9	4.89	8.5	8.68	5.8
LiI	3.39	3.9	15	3.7	9.6	3.7	9.1	3.8	12
NaF	3.83	4.24	10.7	3.05	20.3	4.4	4.8	3.51	8.3
NaCl	1.76	1.6	9	1.61	8.5	1.65	6.2	1.5	4.7
NaBr	1.16	1.13	2.5	1.15	8.5	1.1	5.1	1.57	5.3
NaI	0.96	0.94	2	1.1	4.5	1.95	1	1.93	3.1
KF	0.56	0.53	5.3	0.52	7.1	0.54	3.5	0.61	3.9
KCl	1.17	1.34	4.5	1.29	10.2	1.18	8.5	1.19	1.7
KBr	0.76	0.82	7.8	0.71	6.5	0.79	3.9	0.69	9.2
KI	2.43	2.46	1.2	1.35	4.4	2.45	8.2	2.26	6.9
RbF	1.8	1.79	5.5	1.89	5	1.64	8.8	1.95	8.3
RbCl	0.86	0.78	1.4	0.76	11.6	0.9	4.6	0.86	4.6
RbBr	0.46	0.44	4.3	0.42	3.6	0.49	6.5	0.47	2.8
RbI	0.34	0.34	0	0.36	3.8	0.36	5.8	0.33	2.9
CsF	1.62	1.6	1.2	1.3	9.7	1.75	8	1.69	4.3
CsCl	0.74	0.77	4	0.79	6.7	0.79	6.7	0.69	6.7
CsBr	0.36	0.37	2.7	0.38	0.38	5.5	0.33	0.33	8.3
CsI	0.25	0.22	12	0.24	4	0.24	4	0.27	8
AVERAGE	% DEVIA	TION	5.57	2	7.81	3	6.27	5	5.715

4. Acknowledgement.

We are extremely thankful to Prof. Md. Mazahir Hasan to suggest the problems and its relevance in the determination of interionic short range repulsive interaction.

||March||2013||

References

- [1] Hertzberg G, Molecular Spectra and molecular structure; vol. I spectra of diatomic molecules (Reinhold-Van Nostrand), New York, 1950.
- [2] Raghubanshi S.S. & Sharma L.K. Indian J. Pure & Applied phys 16, (1978) 1071
- [3] Ghodgankar AM & Ramani K, J. Chem. Soco Faraday Trans Part -2, 77 (1981) 209
- [4] Ghodgaonkar A.M. & Ramani K, Phys Status Salidib (Germany) 108 (1981) K 133
- [5] Verma M.P. & Jha B.L. Indian J. Phys part & 55 (1981) 170
- [6] Morse P.M. Phys Rev (USA) 34 (1929) 57
- [7] Kratzer A. Z. Phys (Germany) 3 (1920) 289
- [8] Rydberg B. Z. Phys (Germany) 73 (1931) 876
- [9] Rittner E.S. J. Chem. Phys 19 (1951) 1030
- [10] Brumer P.P. & Karplus M, J. Chem Phys 58 (1973) 3903
- [11] Varshni Y. P. & Shukla R.C. Rev Mod. Phys, 35 [1963] 130
- [12] Thakur K. P. Indian J. Pure appl. Phys 11 (1973) 549, Indian J. Chem. 12A (1974) 376
- [13] Thakur K.P. and Pandey J.P.J. Chem. Phys 71(1974) 850
- [14] Born M and Mayer J.E. Z. Phys. 75 (1932)
- [15] Hellmann, Acta physica, Chemica 2 (1934) 913, J. Chem. Phys. 3 (1935) 61
- [16] Ali MS and Hasan M. M. Indian J. phys 63 B (1989), 486
- [17] Wilson J.N & Curtis R.M. J.chem.phys 1970,187
- [18] Ruffia A.R.phys. Rev.130,1963,1412
- [19] Cocker.H, J.chen. phys80,1976,2078.
- [20] Pauling L,Proc.Royal soc .Londan A,114 ,1927,191.
- [21] Slater J.C&Kirkwood J.G.phys.Rev 37,1931,682.
- [22] Shankar J,kumar M& Kaur A.J.Indian J. phys 60B,1985,171.
- [23] Mandal & Ghatak J: Indian Chem. Soc Vol. 84, Feb 2007, 145-148