Polynomials having no Zero in a Given Region

M. H. Gulzar
Department of Mathematics University of Kashmir, Srinagar 190006

ABSTRACT:
In this paper we consider some polynomials having no zeros in a given region. Our results when combined with some known results give ring–shaped regions containing a specific number of zeros of the polynomial.

Mathematics Subject Classification: 30C10, 30C15

Keywords and phrases: Coefficient, Polynomial, Zero.

I. INTRODUCTION AND STATEMENT OF RESULTS

In the literature we find a large number of published research papers concerning the number of zeros of a polynomial in a given circle. For the class of polynomials with real coefficients, Q. G. Mohammad [5] proved the following result:

Theorem A: Let \(P(z) = \sum_{j=0}^{\infty} a_j z^j \) be a polynomial of degree \(n \) such that

\[
a_n \geq a_{n-1} \geq \ldots \geq a_1 \geq a_0 > 0.
\]

Then the number of zeros of \(P(z) \) in \(|z| \leq \frac{1}{2} \) does not exceed

\[
1 + \frac{1}{\log 2} \log \frac{a_n}{a_0}.
\]

Bidkham and Dewan [1] generalized Theorem A in the following way:

Theorem B: Let \(P(z) = \sum_{j=0}^{\infty} a_j z^j \) be a polynomial of degree \(n \) such that

\[
a_n \leq a_{n-1} \leq \ldots \leq a_{k+1} \leq a_k \geq a_{k-1} \geq \ldots \leq a_1 \geq a_0 > 0,
\]

for some \(k, 0 \leq k \leq n \). Then the number of zeros of \(P(z) \) in \(|z| \leq \frac{1}{2} \) does not exceed

\[
\frac{1}{\log 2} \log \left(\frac{|a_n| + |a_0| - a_n - a_0 + 2a_k}{|a_k|} \right).
\]

Ebadian et al [2] generalized the above results by proving the following results:

Theorem C: Let \(P(z) = \sum_{j=0}^{\infty} a_j z^j \) be a polynomial of degree \(n \) such that

\[
a_n \leq a_{n-1} \leq \ldots \leq a_{k+1} \leq a_k \geq a_{k-1} \geq \ldots \geq a_0
\]

for some \(k, 0 \leq k \leq n \). Then the number of zeros of \(P(z) \) in \(|z| \leq \frac{R}{2} \), \(R > 0 \), does not exceed

\[
\frac{1}{\log 2} \log \left(\frac{|a_n| R^{n+1} + |a_0| + R^k (a_k - a_0) + R^k (a_k - a_n)}{|a_k|} \right)
\]

for \(R \geq 1 \).
and
\[
\frac{1}{\log c} \log \left\{ \frac{|a_n| R^{n+1} + |a_o| + R(a_{a-} - a_o) + R^\kappa(a_{a-} - a_o) + R^\kappa(a_{a-} - a_o)}{|a_n|} \right\} \quad \text{for } R \leq 1.
\]

M.H. Gulzar [3] generalized the above result by proving the following result:

Theorem D: Let \(P(z) = \sum_{j=0}^{n} a_j z^j \) be a polynomial of degree \(n \) with \(\text{Re}(a_j) = \alpha_j, \ \text{Im}(a_j) = \beta_j \) such that for some \(k, \tau, , 0 < k \leq 1, 0 < \tau \leq 1, 0 \leq \lambda \leq n, \)
\[k \alpha_n \leq \alpha_{n-1} \leq \ldots \leq \alpha_{\lambda+1} \leq \alpha_{\lambda} \geq \alpha_{\lambda-1} \geq \ldots \geq \tau \alpha_0. \]

Then the number of zeros of \(P(z) \) in \(|z| \leq \frac{R}{c} (R > 0, c > 1) \) does not exceed
\[
\frac{1}{\log c} \log \left\{ \frac{|a_n| R^{n+1} + |a_o| + R^\kappa[\alpha_{\lambda} - \tau(\alpha_o + \alpha_n) + |\beta_n| + |\beta_\lambda| + 2 \sum_{j=1}^{\lambda-1} |\beta_j|]}{|a_n|} \right\}
\]
for \(R \geq 1 \)
\[
\frac{1}{\log c} \log \left\{ \frac{|a_n| R^{n+1} + |a_o| + R^\kappa[\alpha_{\lambda} - \tau(\alpha_o + \alpha_n) + |\beta_n| + |\beta_\lambda| + 2 \sum_{j=1}^{\lambda-1} |\beta_j|]}{|a_n|} \right\}
\]
and

In this paper we prove the following result:

Theorem 1: Let \(P(z) = \sum_{j=0}^{n} a_j z^j \) be a polynomial of degree \(n \) with \(\text{Re}(a_j) = \alpha_j, \ \text{Im}(a_j) = \beta_j \) such that for some \(k, \tau, , 0 < k \leq 1, 0 < \tau \leq 1, 0 \leq \lambda \leq n, \)
\[k \alpha_n \leq \alpha_{n-1} \leq \ldots \leq \alpha_{\lambda+1} \leq \alpha_{\lambda} \geq \alpha_{\lambda-1} \geq \ldots \geq \tau \alpha_0. \]

Then \(P(z) \) has no zero in \(|z| < \frac{|a_i|}{M_1} \) for \(R \geq 1 \) and no zero in \(|z| < \frac{|a_i|}{M_2} \) for \(R \leq 1 \) where
\[
M_1 = |a_n| R^{n+1} + R^\kappa[\alpha_{\lambda} - \tau(\alpha_o + \alpha_n) + |\beta_n| + |\beta_\lambda| + 2 \sum_{j=\lambda+1}^{\lambda-1} |\beta_j|] + R^\kappa[\alpha_{\lambda} - \tau(\alpha_o + \alpha_n) + |\beta_n| + |\beta_\lambda| + 2 \sum_{j=1}^{\lambda-1} |\beta_j|]
\]
and
\[
M_2 = |a_n| R^{n+1} + R^\kappa[\alpha_{\lambda} - \tau(\alpha_o + \alpha_n) + |\beta_n| + |\beta_\lambda| + 2 \sum_{j=\lambda+1}^{\lambda-1} |\beta_j|] + R[\alpha_{\lambda} - \tau(\alpha_o + \alpha_n) + |\beta_n| + |\beta_\lambda| + 2 \sum_{j=1}^{\lambda-1} |\beta_j|].
\]
Combining Theorem 1 with Theorem D, we get the following result:

Theorem 2: Let \(P(z) = \sum_{j=0}^{\infty} a_j z^j \) be a polynomial of degree \(n \) with \(\text{Re}(a_j) = \alpha_j, \text{Im}(a_j) = \beta_j \) such that for some \(k, \tau, \lambda, 0 < k \leq 1, 0 < \tau \leq 1, 0 \leq \lambda \leq n \),

\[
 k\alpha_n \leq \alpha_{n-1} \leq \ldots \leq \alpha_{\lambda+1} \leq \alpha_{\lambda} \geq \alpha_{\lambda-1} \geq \ldots \geq \alpha_0.
\]

Then the number of zeros of \(P(z) \) in \(\frac{|a_0|}{M_1} \leq |z| \leq \frac{R}{c} \) \((R > 0, c > 1)\) does not exceed

\[
 \frac{1}{\log c} \log \left\{ \frac{|a_n| R^{n+1} + |a_0| + R^\lambda [\alpha_\lambda - \tau (|\alpha_0| + \alpha_\lambda) + |\beta_0| + |\beta_\lambda| + 2 \sum_{j=1}^{\lambda} |\beta_j|]}{|a_0|} \right\}
\]

for \(R \geq 1 \)

and the number of zeros of \(P(z) \) in \(\frac{|a_0|}{M_2} \leq |z| \leq \frac{R}{c} \) \((R > 0, c > 1)\) does not exceed

\[
 \frac{1}{\log c} \log \left\{ \frac{|a_n| R^{n+1} + |a_0| + R^{\lambda} [\alpha_\lambda - \tau (|\alpha_0| + \alpha_\lambda) + |\beta_0| + |\beta_\lambda| + 2 \sum_{j=1}^{\lambda} |\beta_j|]}{|a_0|} \right\}
\]

for \(R \leq 1 \),

where \(M_1 \) and \(M_2 \) are as given in Theorem 1.

For different values of the parameters, we get many interesting results including some already known results.

2. Proofs of Theorems

Proof of Theorem 1: Consider the polynomial

\[
 F(z) = (1-z)P(z) = (1-z)(a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0)
\]

\[
 = -a_n z^{n+1} + (a_n - a_{n-1}) z^n + \ldots + (a_1 - a_0) z + a_0
\]

\[
 = -a_n z^{n+1} + (k \alpha_n - \alpha_{n-1}) z^n + \sum_{j=\lambda+1}^{n} (\alpha_j - \alpha_{j-1}) z^j + \sum_{j=2}^{\lambda} (\alpha_j - \alpha_{j-1}) z^j + \sum_{j=2}^{\lambda} (\alpha_1 - \alpha_0) z + \sum_{j=2}^{\lambda} (\alpha_1 - \alpha_0) z + \sum_{j=2}^{\lambda} (\alpha_1 - \alpha_0) z
\]

\[
 = a_0 + G(z), \text{ where}
\]
Polynomials having no Zero in a Given Region

\[G(z) = -a_n z^{n+1} + a_0 + [k(\alpha_n - \alpha_{n-1}) - (k - 1)\alpha_n]z^n + \sum_{j=1}^{n-1} (\alpha_j - \alpha_{j-1})z^j + \sum_{j=2}^{k} (\alpha_j - \alpha_{j-1})z^j + [k(\alpha_0 - \tau \alpha_n) + (\tau - 1)\alpha_0]z + i\sum_{j=1}^{k} (\beta_j - \beta_{j-1})z^j \]

For \(|z| \leq R\), we have, by using the hypothesis

\[
|G(z)| \leq |a_n| R^{n+1} + [(\alpha_{n-1} - k\alpha_n) + (1 - k)|\alpha_n|]R^n + \sum_{j=1}^{n-1} (\alpha_j - \alpha_{j-1})R^j + \sum_{j=2}^{k} (\alpha_j - \alpha_{j-1})R^j + [(\alpha_1 - \tau \alpha_0) + (1 - \tau)|\alpha_0|]R + \sum_{j=1}^{k} (|\beta_j| + |\beta_{j-1}|)R^j
\]

which gives

\[
|G(z)| \leq |a_n| R^{n+1} + R^n |\alpha_n| + |k(\alpha_n) + \alpha_n| + |\alpha_0| + |\beta_0| + |\beta_1| + 2 \sum_{j=1}^{n} |\beta_j|
\] + \[R^2 |\alpha_0 - \tau(\alpha_0 + \alpha_n) + |\alpha_1| + |\beta_1| + 2 \sum_{j=1}^{k-1} |\beta_j|
\]

\[= M_1 \quad \text{for } R \geq 1\]

and

\[
|G(z)| \leq |a_n| R^{n+1} + R^n |\alpha_n| + k(\alpha_n) + |\alpha_0| + |\beta_0| + |\beta_1| + 2 \sum_{j=1}^{n} |\beta_j|
\] + \[R^2 |\alpha_0 - \tau(\alpha_0 + \alpha_n) + |\alpha_1| + |\beta_1| + 2 \sum_{j=1}^{k-1} |\beta_j|
\]

\[= M_2 \quad \text{for } R \leq 1\]

Since \(G(z)\) is analytic in \(|z| \leq R\) and \(G(0)=0\), it follows by Schwarz Lemma that

\[|G(z)| \leq M_1 |z| \quad \text{for } R \geq 1 \quad \text{and} \quad |G(z)| \leq M_2 |z| \quad \text{for } R \leq 1\]

Hence, for \(R \geq 1\),

\[|F(z)| = |a_0 + G(z)| \geq |a_0| - |G(z)| \geq |a_0| - M_1 |z| \geq 0\]

if \(|z| < \frac{|a_0|}{M_1}\).

And for \(R \leq 1\),

\[|F(z)| = |a_0 + G(z)| \geq |a_0| - |G(z)| \geq |a_0| - M_2 |z| \geq 0\]

if \(|z| < \frac{|a_0|}{M_2}\).

This shows that \(F(z)\) has no zero in \(|z| < \frac{|a_0|}{M_1}\) for \(R \geq 1\) and no zero in \(|z| < \frac{|a_0|}{M_2}\) for \(R \leq 1\). But the zeros of \(P(z)\) are also the zeros of \(F(z)\). Therefore, the result follows.
REFERENCES

