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Abstract: 
In highway design, horizontal curves provide directional transition for roadways. Three categories of horizontal 

curves are simple circular curves, compound circular curves, and spiral circu lar curves. Compound and spiral curves, as 

alternatives to a simple circular curve, are often more costly since they are longer in length and require additional right -of-

way; with cost differences amplified at higher design speeds.  This study presents calculations associated with using a single 

elliptical arc in lieu of compound or spiral curves in situations where the use of simple circular curves is not prudent due to 

driver safety and comfort considerations.  The study presents an approach to analytically determine the most suitable substitute 

elliptical curve for a g iven design speed and intersection angle.  Computational algorithms are also provided to stakeout the 

elliptical curve. These include algorithms to determine the best fit elliptical arc with the minimum arc length and minimum 

right-of-way; and algorithms to compute chord lengths and deflection angles and the associated station numbers for points 

along the elliptical curve.  These algorithms are applied to an example problem in which elliptical results are compared to the 

equivalent circular curve and spiral-circular curve results.   
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I. Introduction 
 In highway design, a change in the direction of the roadway is achieved by a circular or a compound circular curve 

connecting the two straight sections of the roadway known as tangents. A common horizontal alignment treatment is a 

compound curve.  It consists of a circular curve and two transition curves, one at each end of the circular curve. The transition 

curves are either circles of larger radii or spiral curves.  In some cases no transition curves are needed when the design speeds 

or degrees of curvature are fairly low.  In such cases, the horizontal alignment could be a single circular curve. 

 

The most important factor in designing horizontal curves is the design speed. When a vehicle negotiates a horizontal 

curve, it experiences a lateral force known as the centrifugal fo rce. This force, which is due to the change in the direction of 

the velocity vector, pushes the vehicle outward from the center of curvature. The vehicle is also subjected to an inward radial 

force, the centripetal force. In fact, the centripetal force is always directed orthogonal to the velocity vector, towards the 

instantaneous center of curvature. At high speeds, the centripetal force acting inward may not be large enough to balance the 

centrifugal force act ing outward. To mit igate this problem, a lateral roadway angle, known as the superelevation angle 𝑒(or 

banking angle) is provided (Garber and Hoel, 2002, p. 70). To keep these forces in balance, the minimum required radius is 

then given by the following equation:  

 R =
v 2

g e + fside
 

 . (1) 

Where 𝑅 is the min imum radius,  is the design speed, e is the superelevation angle in radians, fside  is the coefficient of side 

friction, and 𝐠 is the acceleration of gravity.  

 

1.1 Spiral Transitions 

On simple circu lar curves, as the vehicle enters the horizontal curve with a velocity,  the centrifugal force jumps 

from zero on the tangent section to   mv 2 𝑅    on the curve.  A transition curve such as a larger radius circle or a spiral helps 

moderate this sudden increase in force, thus making the alignment smoother and safer.   Spiral is a particularly good transit ion 

curve as its radius decreases gradually along its length (the curvature changes linearly in length), from an infinite radius (zero 
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curvature) at the tangent to spiral to the design radius  at the spiral to circu lar point. The minimum length of spiral 

recommended by AASHTO for a horizontal curve of rad ius  is given by:  

 

𝑙𝑠 =
3.15 V3

R. C
 (2) 

Where 

𝑙𝑠 = minimum length  of transition spiral   ft  
V = design speed  mph  
R = radius  of curvature   ft  
C = rate  of change  of centripetal  acceleration   ft sec 3  . 

The use of transition curves such as the spiral, although yielding smoother alignments, often results in longer 

roadway lengths and greater right-of-way requirements.  In addition the stake-out computations are considerably more 

involved than using simple circular curves.   

 

II. Approach  
2.1 Use of Ellipses as Horizontal Curves 

In this section, the application of ellipses as horizontal alignment curves  is examined. This includes a general 

discussion of properties of ellipse followed by a procedure for finding an appropriate elliptical curve that could provide a 

smooth and safe transition from the PC to PT. The associated chord length and deflection angle calculations for an elliptical 

arc are also presented. 

 

Geometrically, an ellipse is the set of points in a plane for which the sum of distances from two points 𝐹1  and 𝐹2  is 

constant (See Figure 2). These two fixed points are called the foci. One of the Kepler’s laws is that the orbits of the planets in 

the solar system are ellipses with the sun at one focus.  

 

In order to obtain the simplest equation for an ellipse, we p lace the foci on the x-axis at points  −c, 0  and  c , 0  so 

that the origin, which is called the center o f ellipse, is halfway between 𝐹1  and 𝐹2   (Figure 1).  Let the sum of the distances 

from a point on the ellipse to the foci be 2𝑎 > 0. Let us also suppose that  P(x, y) is any point on the ellipse. According to the 

definit ion of the ellipse, we will have: 

  PF1
 +  PF2

 = 2𝑎 
(3) 

that is,  

 
  𝑥 + 𝑐 2 + 𝑦2 +   𝑥 − 𝑐 2 + 𝑦2 = 2𝑎 . 

 

(4) 

Or, 

 
 𝑎2 − 𝑐2 𝑥2 + 𝑎2𝑦2 = 𝑎2  𝑎2 − 𝑐2  . 

 

(5) 

In the triangle 𝐹1𝐹2 𝑃  (Figure 1), it can be seen that 2𝑐 < 2𝑎, so 𝑐 < 𝑎 and therefore 𝑎2 − 𝑐2 > 0 . For convenience, let 

𝑏2 = 𝑎2 − 𝑐2. Then the equation of the ellipse becomes  

 

 
𝑏2 𝑥2 + 𝑎2𝑦2 = 𝑎2 𝑏2  . 

 

(6) 

Or by div iding both sides by 𝑎2𝑏2 ,  

 

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 . 

 

(7) 

 

Since 𝑏2 = 𝑎2 −𝑐2 <  𝑎2 , it follows that 𝑏 < 𝑎. The x-intercepts are found by setting 𝑦 = 0. Then 𝑥2 𝑎2 = 1, or 𝑥2 = 𝑎2 , so 

𝑥 = ± 𝑎. The corresponding points  𝑎, 0  and  −𝑎, 0  are called the vertices of the ellipse and the line segment joining the 

vertices is called  the major axis . To find the y -intercepts, we set 𝑥 = 0 and obtain 𝑦2 = 𝑏2 , so 𝑦 = ±𝑏. Equation 7 is  



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 3 Issue. 1 

 
 

Issn 2250-3005(online)                                                    January| 2013                                                                                 Page 37 

 
 

 

unchanged if 𝑥  is replaced by −𝑥 or 𝑦 is replaced by −𝑦, so the ellipse is symmetric about both axes. Notice that if the foci 

coincide, then 𝑐 = 0 and 𝑎 = 𝑏  and the ellipse becomes a circle with radius 𝑟 = 𝑎 = 𝑏 . 

 

 

In mathemat ics, there is a parameter for every conic section called eccentricity (Larson et al., 2010, p. 701). Eccentricity 

defines how much the conic section deviates from being a circle. As a conic section, ellipse has its own eccentricity 𝜏 which is 

calculated as, 

 
𝜏 =

𝑐

𝑎
 , 

 

(8) 

 

in which: 

𝜏 =  eccentricity, 

𝑎 = length of major axis , 

𝑐 =   𝑎2 − 𝑏2 . 

 

In most mathematics literature, the eccentricity is denoted by e or 𝜺. In this text, we use 𝜏 to denote the eccentricity in order to 

avoid confusion with the superelevation angle, e.  

 

2.2 Circular Curve, Design Speed, and Superelevation 

As discussed earlier, the relation between the radius of the circular curve, the design speed, and the superelevation is 

governed by Eq. 1.  Therefore, the desired elliptical curve should as a minimum satisfy the minimum radius required by 

AASHTO, as per Eq. 1. Th is establishes one of the constraints for finding an appropriate elliptical curve. Before considering 

this and other constraints, however, we should determine what constitutes a “radius” for an ellipse. To achieve this, we would 

utilize the polar coordinate system. 

 

In the polar coordinate system, there are two common equations to describe an ellipse depending on where the origin 

of the polar coordinates is assumed to be. If, as shown in Figure 2, the origin is placed at the center of the ellipse and the 

angular coordinate 𝜃 is measured from the major axis, then the ellipse’s equation will be:  

 
𝑟 𝜃 =

𝑎𝑏

  𝑏  cos 𝜃  
2

+  𝑎  sin 𝜃  2

 . 
(9) 

 

 

On the other hand, if the orig in of polar coordinates is located at a focus (Figure 3) and the angular coordinate 𝜃 is still 

measured from the major axis, then the ellipse’s equation will be:   

 𝑟 𝜃 =
𝑎 1 − 𝜏2 

1 ± 𝜏 cos 𝜃 
 (10) 

 

Where the sign in the denominator  is negative if the reference direction is from 𝜃 = 0 towards the center.  

 

 

From the astronomical point of view, Kepler’s laws established that the orbits of planets in a solar system are ellipses 

with a sun at one focus. Thus, the ellipse’s polar Eq. 10, in which the origin of the polar coordinates is assumed at one focus, 

will be helpfu l to obtain the desired elliptical arc . 

 

Figure 3 shows that the min imum rad ius of the desired  ellipse with respect to the focus 𝐹2  is 𝑎 − 𝑐 . Since = 𝑎𝜏  , then we 

have: 𝑎 − 𝑐 = 𝑎 1 − 𝜏  . On the other hand, the minimum rad ius should not be smaller than the minimum rad ius Rmin  

recommended by AASHTO (Eq . 1). Thus, we have: 

 𝑎 1 −𝜏 ≥ Rmin  . 
 

(11) 
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Since we are looking for an elliptical curve to connect the PC to PT, it would be an arc of an ellipse that satisfies the equality 

below as a constraint: 

 
𝑎 1 −𝜏 = Rmin  . (12) 

 

Therefore, we should first find an appropriate ellipse and then identify the desired arc to be used as a highway curve. 

In our design problem, as in most highway horizontal alignment problems, the known parameters are the location of PI, the 

angle , and the design speed, Vd . Based on the known design speed, we can determine a value for Rmin  . With Rmin  known, 

we now need to identify an equivalent elliptical arc . In Eq. 12, we have two unknown variables  𝑎 and  𝜏  relating to the 

ellipse. Using numeric methods, we can find all pairs of  𝑎 , 𝜏  which satisfy our constraint by inserting acceptable values for 𝜏 

and solving the equation for 𝑎. The eccentricity of ellipse, 𝜏 ranges from 0 to 1. To  make a fin ite set of values for 𝜏, we should 

consider only one or two decimal points depending on the level of accuracy required. 

 

By having the major axis 𝑎 and the eccentricity 𝜏, the equivalent ellipse can be easily identified as,  

 𝑏 = 𝑎 1 − 𝜏2 . (13) 

 

Other than the minimum radius requirement, another design constraint requires that the arc of the ellipse be tangent to 

the lines connecting the PI to the PT and the PC. A third constraint is an aesthetic consideration. According to AASHTO, 

symmetric designs enhance the aesthetics of highway curves. Therefore, a symmetric arc of the ellipse is desirable to meet the 

aesthetics requirement.  Note that since the desired arc should be symmetrical and be of minimum possible length, the arc 

must be symmetric with respect to the ellipse’s major axis (and not the minor axis).  

 

Let us assume a hypothetical ellipse in the Cartesian coordinate system with the center at the origin and the focus on 

the y-axis (Fig. 4). Suppose that the desired arc is the smallest arc between points A = PT =  𝑥1 ,𝑦1
  and B = PC =  𝑥2 ,𝑦2

 . 

Since the arc is symmetric with respect to the major axis , we have 𝑥1 = −𝑥2, and 𝑦1 = 𝑦2  . 
 

Let us also assume that the slope of the tangent line at points  and  are 𝑚1  and 𝑚2 , respectively. So, 𝑚1 = −𝑚2 . 

As shown in Figure 4, the long chord for the desired arc of the ellipse and the tangent lines form an isosceles triangle. 

Therefore,  

 
𝑚1 = tan  180 −  

∆

2
 , (14) 

and 

 
𝑚2 = − tan  180 −  

∆

2
 . (15) 

On the other hand, the equation of the ellipse in the Cartesian coordinate system is: 

 𝑥2

𝑏2
+

𝑦2

𝑎2
= 1. (16) 

By taking the derivative of Eq. 16, the slope of the tangent line at any point on the ellipse is obtained, namely, 

 𝑑𝑦

𝑑𝑥
=

−𝑎2 𝑥

𝑏2 𝑦
 . (17) 

Eq. 17 can be re-written as: 

 𝑦 = ±
𝑎

𝑏
 𝑏2 − 𝑥2  . (18) 

By combin ing Eqs.17 and 18, we obtain: 

 
𝑑𝑦

𝑑𝑥
=

−𝑎𝑥

𝑏 𝑏2 − 𝑥2
 . (19) 

Therefore, 

 𝑚1 = 
−𝑎𝑥1

𝑏 𝑏2 − 𝑥1
2

 , (20) 

and 

 𝑥1 =
𝑚1 .𝑏2

 𝑎2 + 𝑚1
2 . 𝑏2

 , (21) 
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 𝑦1 =
𝑎

𝑏
 𝑏2 − 𝑥1

2  . (22) 

By the same token, the location of point B =  𝑥2 ,𝑦2
  is determined to be: 

 𝑥2 = −𝑥1 =
−𝑚1 .𝑏2

 𝑎2 + 𝑚1
2 . 𝑏2

 (23) 

and  

  𝑦2 = 𝑦1 . (24) 

 

Consequently, any desired arc of the ellipse can be found by having the slope  (direction) of the tangent lines and the 

intersection angle between them. 

2.3 Length of the Arc of an Ellipse 

To min imize the right-of-way, a min imum-length arc is desired that meets all three constraints discussed earlier. In 

the previous section, a method was introduced to identify an arc that only satisfies the tangent lines constraint. After this, the 

resulting arc should be checked to ensure it is the minimum-length arc. 

 

To find the length of an ellipse arc, the polar coordinate system is again useful. The length of an ellipse arc between  

and 𝜃 can be found from the fo llowing integration (Larson et al., 2010, p. 704): 

 𝐸 𝜃 , 𝜏 = 𝑎   1 −  𝜏 2𝑠𝑖𝑛2𝑡
𝜃

0

  𝑑𝑡 (25) 

in which, 

𝑎: is the length of the major axis of the ellipse; 

𝜏: is the eccentricity of the ellipse; and 

𝐸 𝜃, 𝜏 : is the length of the arc of an ellipse with eccentricity of 𝜏, between  and 𝜃. 

 

To be able to use this integration, we need to know the coordinates of points  and  in  the polar coordinate system. Since 

A =  𝑥1 ,𝑦1
  and B =  𝑥2 ,𝑦2

 , the polar coordinates of points  and  can be obtained to be:  

 𝜃1 = tan −1  
𝑦1

𝑥1

 ,  𝑟1 =  𝑥1
2 + 𝑦1

2  ; 
(26) 

 

and 

 
𝜃2 = tan−1  

𝑦2

𝑥2

 ,  𝑟2 =  𝑥2
2 + 𝑦2

2  . 

 

(27) 

 

Now, let us define the length of the arc as: 

 𝑙𝑎 ,𝜏 (𝜃1 , 𝜃2 ) = 𝐸 𝜃2 , 𝜏 −  𝐸 𝜃1 , 𝜏  

 

(28) 

in which, 

𝜃1 = the angle at which the ellipse arc starts; 

𝜃2 = the angle at which the ellipse arc ends; and 

𝑙𝑎 ,𝜏
 𝜃1 , 𝜃2

  = is the length of the arc starting at angle 𝜃1  and ending at 𝜃2  on an ellipse with major axis 𝑎 and the 

eccentricity of 𝜏. 

 

2.4 Area of an Elliptical Sector and the Right-Of-Way 

As discussed earlier, there are two ellipse sectors  commonly used.  One is defined with respect to the center of the 

ellipse and the other with respect to a focus .  The ellipse’s equation with respect to the focus is used here to calculate the area 

of the sector (Figure 5), as follows: 

     𝐴𝐸 ,𝜏 (𝜃1 , 𝜃2 ) =  
1

2
𝑟2 𝜃   𝑑𝜃 

𝜃2

𝜃1

=   
𝑎2 1 − 𝜏2 2

2 1 ± 𝜏 cos 𝜃 2
 𝑑𝜃 .

𝜃2

𝜃1

 (29) 
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Let us assume that the right-of-way width is 100 ft., 50 ft. on each side of the centerline. In Figure 6, the shaded strip shows 

the right-of-way associated with an elliptical arc. The right-of-way can be accordingly calculated as: 

 

 
𝑅𝑂𝑊 =  

1

2
 𝑟 𝜃 + 50 2𝑑𝜃  −   

1

2
 𝑟 𝜃 − 50 2𝑑𝜃

𝜃2

𝜃1
 

𝜃2

𝜃1
.  (30) 

 

2.5 Chord Length and Deflection Angle Calculations 

Assuming that the desired arc of an ellipse connecting the PC to PT is identified, the next step is the calculation of the 

chord lengths and deflection angles. In Figure 7, the chord length 𝑙𝑐 and the deflection angle 𝛿  are schematically shown. Using 

the polar equation with respect to the center of the ellipse, we know that: 

 𝑟 𝜃 =
𝑎𝑏

  𝑏 cos 𝜃 2 +  𝑎 sin 𝜃 2
  . (31) 

As shown in Figure 7, OB, BD, and DO form the triangle OBD. The length of OB and DO can be calculated by 

inserting 𝜃1  and 𝜃2  in the polar equation of the ellipse. Let us suppose that the deflection angles need to be calculated in 

decrement of 𝛼 from  𝜃2  to 𝜃1 . Therefore, the angle between OB and DO is 𝛼, as shown in Figure 7. Thus, the length of chord 

𝑙𝑐 can be obtained by applying the law of cosines: 

 𝑙𝑐
2 = 𝑟 𝜃2

 2 + 𝑟 𝜃1
 2 − 2 𝑟 𝜃2

  𝑟 𝜃1
  cos 𝛼 , (32) 

Now, we need to find the deflection angle, 𝛿 . According to the law of sines, in the triangle OBD we have: 

 
sin(𝛾)

𝑟 𝜃2
 

=
sin(𝛼)

𝑙𝑐
 . (33) 

Then: 

 𝛾 = sin−1  
𝑟 𝜃2

  sin(𝛼)

𝑙𝑐
  (34) 

In Figure 7, we also have: 

 𝜑 = 180° − 𝜃1  (35) 

 

On the other hand, in the triangle BDE: 

 
𝛽 = 180° − 𝛾 − 𝜑  
    =  180° − 𝛾 −  180° −𝜃1

 = 𝜃1 − 𝛾 . 
(36) 

 

Then, 

    δ = B1 −  β =  
∆

2
−   𝜃1 − 𝛾 =

∆

2
−  𝜃1 + 𝛾 . (37) 

 

 

2.6 Station Number Calculations for PC and PT 

Referring to Figure 7, the locations of points  (PT) and  (PC) are known. Based on definition, the intersection of 

the tangent lines at points  and  will be the location of the  PI. The equations of tangent lines are: 

 Tangent  Line at A:  𝑦 = 𝑦1 + 𝑚1
 𝑥 − 𝑥1

 , (38) 

and 

 Tangent  Line at B:  𝑦 = 𝑦2 + 𝑚2
 𝑥 − 𝑥2

  . (39) 

By solving Eqs.38 and 39 simultaneously, the location of the PI can be determined.   

Note that 𝑥1 , 𝑥2, 𝑦1 , 𝑦2 , 𝑚1 , and 𝑚2  are all known.  

 

Then: 

 𝑥∗ =
𝑦1 − 𝑦2 + 𝑚1𝑥1 − 𝑚2𝑥2

𝑚1 − 𝑚2

         (40) 

And since 𝑚1 = −𝑚2  : 

 𝑥∗ =
𝑦1 − 𝑦2 + 𝑚1(𝑥1 + 𝑥2)

2𝑚1

  , (41) 

 

and 

 

 𝑦∗ = 𝑦1 + 𝑚1(𝑥∗ − 𝑥1). (42) 
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Therefore, the length of tangent  is: 

 

 T =   𝑦∗ − 𝑦1
 2 +  𝑥∗ − 𝑥1

 2  . (43) 

 

 

Given the tangent length T  above, the length of the elliptical arc 𝑙𝑎 𝑒𝑙𝑝
can be calculated as: 

 

 

 

𝑙𝑎 𝑒𝑙𝑝
= 𝐸 𝜃2 , 𝜏 − 𝐸 𝜃1 , 𝜏  

 

          = 𝑎    1 −  𝜏 2𝑠𝑖𝑛2𝑡
𝜃2

0

  𝑑𝑡 −   1 −  𝜏 2𝑠𝑖𝑛2𝑡
𝜃1

0

  𝑑𝑡  . 
(44) 

  

Therefore, the stations numbers for the PC and the PT can be determined to be:  

 

 𝑆𝑡𝑎. @ 𝐏𝐂 =  𝑆𝑡𝑎 . @ 𝐏𝐈 –  𝐓 (45) 

 

and 

 

 𝑆𝑡𝑎 . @ 𝐏𝐓 =  𝑆𝑡𝑎 . @ 𝐏𝐂 + 𝒍𝒂𝒆𝒍𝒑
. (46) 

 

 

 

2.7 Finding the Minimum Arc of Ellipse from the PC to PT 

As discussed earlier, the angle , the design speed design, Vd  , and the location of the PI are typically known. Given 

that, the following steps could then be followed to find the desired arc of ellipse connecting the PC to the PT: 

Algorithm (A) 

0. Angle , design speed Vd , and location of PI are g iven. 

1. According to the design speed Vd  , the value of Rmin  for Vd  is known.  

2. Start with eccentricity 𝜏 of 0.1. 

3. Find the major axis  𝑎 by inserting the value of 𝜏 into  

 
𝑎 =

Rmin

1 − 𝜏
 . (47) 

4. Calculate the minor axis 𝑏: 

 𝑏 = 𝑎 1 − 𝜏2  . (48) 

5. Find the slope of the tangent line at point A, 𝑚1: 

 
𝑚1 = tan  180 −  

∆

2
  (49) 

6. Find the slope of the tangent line at point B, 𝑚2: 

 𝑚2 = −𝑚1 . (50) 

7. Find the x-coordinate of point A, 𝑥1: 

 
𝑥1 =

𝑚1  𝑏2

 𝑎2 + 𝑚1
2  𝑏2

  (51) 

8. Find the y-coordinate of point A, 𝑦1 : 

 
𝑦1 =

𝑎

𝑏
 𝑏2 − 𝑥1

2  .  (52) 
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9. Determine 𝜃1 = tan−1  
𝑦1

𝑥1
 . 

10.  Determine 𝜃2 = tan −1  
𝑦2

𝑥2

  . 

11.  Calculate the length of the ellipt ical arc,  

 𝑙𝑎 ,𝜏 (𝜃1 , 𝜃2 ) = 𝐸 𝜃2 , 𝜏 −  𝐸 𝜃1 , 𝜏  (53) 

        in which  

 
𝐸 𝜃, 𝜏 = 𝑎   1 −  𝜏 2𝑠𝑖𝑛2𝑡

𝜃

0

  𝑑𝑡  (54) 

12. Calculate the area of the piece o f ellipse, 𝐴𝐸 ,𝜏 (𝜃1 , 𝜃2 ): 

 
𝐴𝐸,𝜏 (𝜃1 , 𝜃2 ) =

1

2
   

𝑎 1 − 𝜏2 

 1 ± 𝜏 cos 𝜃 
+ 50 

2

−  
𝑎 1 −𝜏2 

 1 ± 𝜏 cos 𝜃 
− 50 

2

 . 𝑑𝜃
𝜃2

𝜃1

. (55) 

13.  Repeat the preceding steps for a new eccentricity 𝜏 with increments of 0.1 until the current 𝜏 is 0.9. 

14. Compare the length of the arc and the area of the piece of ellipse gained for each value of eccentricity 𝜏, and pick 

the eccentricity 𝜏 with the minimum length of arc and area. This is the desired minimum-length ellipt ical arc to 

be used. 

 

2.8 Calculating Chords Length and Deflection Angles 

After the desired elliptical arc is determined, chord lengths and deflection angles should be calculated in order to 

stake out the elliptical arc, as follows: 

 

Algorithm (B) 

0. 𝜃1  and 𝜃2  are obtained in steps 9 and 10 above 

1. Degree of curvature is: 

 
𝐷 =  

 𝜃2 − 𝜃1
 × 100

𝑙𝑎 ,𝜏 (𝜃1 , 𝜃2 )
 . (56) 

2. If 
 𝜃2 −𝜃1 

𝐷
 is an integer, then 

 
𝑁 =

 𝜃2 − 𝜃1
 

𝐷
 ; (57) 

      e lse  

 
𝑁 =  

 𝜃2 − 𝜃1
 

𝐷
  . (58) 

 

3. Let 𝑖 = 1. 

4. 𝛼 = 𝑖 × 𝐷 

5. Calculate 𝜃∗ = 𝜃2 −  𝛼 . 

6. Find the length of chord by applying the equation below: 

  𝑙𝑐 𝑖 =  𝑟 𝜃2
 2 + 𝑟 𝜃∗  2 − 2 𝑟 𝜃2

  𝑟 𝜃∗ cos 𝛼   (59) 

        

in which 

 
𝑟 𝜃 =

𝑎𝑏

  𝑎 cos 𝜃 2 +  𝑏 sin𝜃 2
 . (60) 

7. Find 𝛾: 
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𝛾 = sin−1  

𝑟 𝜃2
  sin(𝛼)

𝑙𝑐
  . (61) 

8. Find deflection angle, δ𝑖 : 

 
δ 𝑖 =

∆

2
−  𝜃∗ + 𝛾  . (62) 

9. 𝑖 = 𝑖 + 1 .  

10. Go to step 4 and repeat until 𝑖 = 𝑁. 

11. Now, we have the deflect ion angle and the corresponding chord length for any station along the elliptical arc. 

 

III. An Application Example  and Its Results 
Let us assume that it is desired to connect the PC to PT through an elliptical arc such that ∆ = 120° , Rmin = 1000 ft, and 

the Sta . # at PI = 40 + 40. First, the arc of ellipse should be found so that it satisfies the initial constraints. Applying the 

algorithm (A) yields the results tabulated in Table 1. Comparing the length of the arc and the right-of-way area, the ellipse 

with  𝜏 = 0.1 provides the min imum length and the min imum right-of-way. Therefore, the desired ellipse is an  ellipse with 

major axis 𝑎 of 1111.1 ft. and minor axis 𝑏 of 1105.5 ft . Using the algorithm (B), chord lengths and deflection angles can be 

obtained, as shown in Table 2. 

 

3.1 The Equivalent Circular Curve Solution 

Again, let us assume that it is desired to connect the PC to PT, but this time through a circular curve such that 

 ∆ = 120°, Rmin = 1000 ft, and 𝑆𝑡𝑎 . # 𝑎𝑡  PI = 40 + 40.0.   

Accordingly, the length of the tangent  is: 

 
T = R tan  

∆

2
 = 1000 tan  

120°

2
 = 1732 .1 ft. (63) 

On the other hand, the length of arc 𝑙𝑎  is: 

 𝑙𝑎 =
𝜋

180
 Δ  R =

𝜋

180
 x 120 x 1000 = 2094.4 ft. (64) 

Given the above, the locations of the PC and PT along with the deflection angles and chord lengths for the stations in 

between can be determined using the conventional circular curve relations .  

 

Note that in highway design, the length of horizontal alignment and its associated right-of-way are two significant 

variables in evaluating alternative designs. According to the results obtained for the circular versus the elliptical approach, the 

right-of-way for circular curve connecting A to D, shown Figure 8, is: 

 
𝑅𝑂𝑊𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 =  𝐴𝐵    × 100 +

Δ 𝜋

360
×   𝑟𝐵𝐶 + 50 2 −  𝑟𝐵𝐶 − 50 2 +  𝐶𝐷    × 100  (65) 

where, 

 
AB    = CD    =

LCE − LCC

2
×

1

cos  
Δ

2
 
 

      =
1913 − 1732

2
×

1

cos  
120

2
 

=
181

2
× 2 = 181 ft. 

(66) 

Then, 

    𝑅𝑂𝑊𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 =  181 × 100 +
𝜋

3
×   1000 + 50 2 −  1000 − 50 2  

+ 181 × 100 = 24,5633 sq. ft.= 5.64 acres. 
(67) 

The roadway length from A to D through circular curve can be computed as: 

 𝐿𝐴𝐵𝐶𝐷 = 𝐿𝐴𝐵 + 𝐿𝐵𝐶 + 𝐿𝐶𝐷 = AB    + 𝑙𝑎 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟
+ CD     

= 181 + 2094 .3 + 181 = 2,456.3 ft. 
(68) 

Table 3 is a comparison of the ROW requirements for the simple circu lar versus the elliptical curves depicted in 

Figure 8 above.   As shown, the elliptical curve is 137 ft. shorter in length than the equivalent simple circular curve. Another 

possible advantage of the elliptical alternative, not apparent in Figure 8 or in Table 3, is that the transition from the normal 

crown to the fully superelevated cross-section and back can be achieved more gradually through the entire length of the 
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elliptical arc. Th is provides for a smoother cross -sectional transition. However, the circular curve needs a somewhat s maller 

right of way, 0.17 acres less than the elliptical curve in this example.  

3.2 Comparing the S piral-Circular Curve Results to the Elliptical Curve Results  

In Figure 9, both the elliptical curve and the equivalent spiral-circu lar curve are shown. The moderately thick curves 

are the spiral curves and the thin curve in the middle is the circular curve. The thick curve is the elliptical curve. The right-of-

way and the length of the spiral-circular curve can be computed as follows: 

 
𝑅𝑂𝑊Spiral −Circular =  𝐴𝐵    × 100  

     + 
Δ𝐶π

360
×   𝑟𝐵𝐶 + 50 2 −  𝑟𝐵𝐶 − 50 2   

                           +
2𝜃𝑠 π

360
×   𝑟𝐵−𝑆.𝐶 . + 50 2 −  𝑟𝐵−𝑆.𝐶 . − 50 2  

                           + 𝐶𝐷    × 100  

(69) 

where, 

 
         AB    = CD    =

LCE − LCS .C .

2
×

1

cos  
Δ

2
 

=
1913.2 − 1865 .6

2
×

1

cos  
120

2
 

= 47.6 ft. 
(70) 

Then, 

 𝑅𝑂𝑊Spiral −Circular = 32,119 sq. ft. = 5.33 acres . (71) 

Length of roadway from A to D through spiral-circular curve is: 

 𝐿𝐴𝐵𝐶𝐷 = 𝐿𝐴𝐵 + 𝐿𝐵−𝑆.𝐶 . + 𝐿𝐵𝐶 + 𝐿𝑆 .𝐶 .−𝐶 + 𝐿𝐶𝐷 = AB    + 𝑙𝑠 + 𝑙𝑎 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟
+ 𝑙𝑠 + CD    

= 47.6 + 263 + 1,831.1 + 263 + 47.6 = 2,452.3 ft. 
(72) 

A comparison of the length and ROW requirements for these two curves is also shown in Table 3 above.  It can be 

noted in Table 3 that the elliptical curve is 133 ft. shorter than its equivalent spiral-circular curve.  However, the spiral-circular 

curve needs a slightly smaller right of way,  0.48 acres less than the ellipt ical curve for this specific example. 

IV. Conclusions and Recommendations 
Based on the results presented, elliptical curves can be used as viable horizontal transition curves in lieu of simple 

circular or spiral-circu lar curves. A possible advantage in using elliptical curves is that elliptical curves can shorten the length 

of the roadway as shown in the application example while provid ing a smoother transition in terms of more g radual increase in 

centrifugal forces. Another possible advantage is that the transition from the normal crown to the fully superelevated cross-

section and back to the normal crown can be achieved more gradually through the entire length of the elliptical arc. Therefore, 

it can also provide a smoother cross-sectional transition and one that is likely more aesthetically p leasing.  

 

As a result, elliptical curves should be considered as an alternative design for horizontal alignments. For instance, for 

each specific horizontal alignment problem with a given intersection angle  and design speed Vd  , alternative calculations for 

simple circular, spiral-circu lar, compound circular, and elliptical curves can be conducted. Then, the results for each 

alternative should be compared with respect to the arc length and ROW requirements to optimize the design.  

 

In terms of calculations, the key equation to find the elliptical arc length is an elliptic integral, known as complete 

elliptic integral of the second kind. This integral should be numerically estimated for each feasible ellipse satisfying the 

intersection angle and the design speed.  Therefore, it is recommended to develop a software to find the most suitable elliptical 

curve for any given  and Vd .  Also, elliptical calcu lations as an alternative design to circular, circular compound, or spiral-

circular alignments should be incorporated in highway design software packages such as Geopak (Bentley Systems, 2012) and 

Microstation (Bentley Systems, 2012). There may also be geometric and aesthetics benefits in using elliptical arcs for reverse 

curves; an aspect that can be investigated as an extension of this work. 

 

Another computational aspect not addressed here is the sight distance computations associated with tall roadside 

objects that may interfere with driver’s line of sight.  In circular curves, this is typically addressed by computing the middle 

ordinate distance from the driv ing edge of the road, which establishes a buffer area on the inside of the circular curve to b e 
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kept free of potential line of sight obstructions.  If an elliptical arc is used instead, equivalent calculations would be necessary.  

However, in lieu of conducting those computations, the equivalent circular middle ordinate will be a conservative and safe 

value to use. 

 

Regarding environmental issues, using elliptical curves has the potential to reduce air pollutants as well. Elliptical 

curves can shorten the length of the roadway as well as provide a smoother transition from the normal crown to the fully 

superelevated cross-section and back.  Both of these properties could reduce vehicular fuel consumption.  During a roadway’s 

design life, an elliptical curve can therefore save road users a significant amount of fuel. Less fuel consumption also typically 

results in less air pollution. In addition, in the case of asphalt pavements, the shorter length of the roadway will decrease solar 

radiation absorbed by the asphalt surface. Therefore, elliptical curves can be more environmentally beneficial as they have the 

potential to substantially reduce air pollution and solar radiation absorbed by the asphalt surface over the design life of the 

roadway. Another possible extension of this work could be a user-cost study of elliptical versus the more conventional 

horizontal alignments.  The user cost could be quantified in terms of fuel consumption and air pollutants over the design life of 

a project and be utilized in evaluation of alternative designs.  
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Figure 1. Cartesian components of a point on ellipse with the center at the origin.  
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Figure 2. Polar Coordinate System with Origin at Center of the Ellipse. 

 
Figure 3. Polar Coordinate System with Origin at a  Focus of the Ellipse. 

 
Figure 4.  An arc of ellipse needed to connect PC to PT.  
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Figure 5. Sector of ellipse with respect to the focus. 

 
Figure 6. Elliptical Arc Right-Of-Way. 

 

 
Figure 7. Diagram of an Elliptical Arc.  
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Figure 8. Final Profile: Elliptical curve vs. circu lar curve. 

 

 
 

Figure 9. Final Profile. Elliptical curve vs. spiral-circular curve. 
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Table 1.  Determining the Most Suitable Elliptical Arc  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.  Chord Lengths and Deflection Angles for Staking Out the Elliptical Arc  

 Station 

Number 

𝜃 ∗ 

(deg.) 

𝒓 𝜃∗   
(ft.) 

Deflection 

Angle (deg.) 

𝜹 

 

Chord 

Length 

(ft.) 

𝑙𝑐 

Arc Length 

(ft.) 

𝑙𝑎 ,𝜏 (𝜃∗, 𝜃2 ) 

𝐒𝐭𝐚. # @ PC 21+25.1 149.80 1106.9 0 0.0 0.0 

 22+25.1 144.64 1107.4 2.52 99.6 100.0 

 23+25.1 139.49 1107.9 5.09 199.1 200.0 

 24+25.1 134.33 1108.4 7.66 298.2 300.0 

 25+25.1 129.17 1108.9 10.24 396.7 400.0 

 26+25.1 124.02 1109.4 12.82 494.5 500.0 

 27+25.1 118.86 1109.8 15.41 591.3 600.0 

 28+25.1 113.70 1110.2 17.99 686.9 700.0 

 29+25.1 108.55 1110.5 20.58 781.2 800.0 

 30+25.1 103.39 1110.8 23.18 873.8 900.0 

 31+25.1 98.23 1111.0 25.77 964.7 1000.0 

 32+25.1 93.08 1111.1 28.37 1053.6 1100.0 

 33+25.1 87.92 1111.1 30.96 1140.4 1200.0 

 34+25.1 82.76 1111.0 33.56 1224.8 1300.0 

 35+25.1 77.60 1110.9 36.16 1306.6 1400.0 

 36+25.0 72.45 1110.6 38.76 1385.7 1499.9 

 37+25.0 67.29 1110.3 41.36 1462.0 1599.9 

 38+25.0 62.13 1109.9 43.96 1535.2 1699.9 

 39+25.0 56.98 1109.4 46.55 1605.3 1799.9 
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 40+25.0 51.82 1109.0 49.15 1672.1 1899.9 

 41+25.0 46.66 1108.5 51.74 1735.4 1999.9 

 42+25.0 41.51 1108.0 54.33 1795.2 2099.9 

 43+25.0 36.35 1107.5 56.92 1851.3 2199.9 

 44+25.0 31.19 1107.0 59.50 1903.7 2299.9 

𝐒𝐭𝐚. # @ PT  44+44.0 30.22 1106.9 59.99 1913.2 2318.9 

 

 

Table 3. A Comparison of Arc Length and ROW Requirements for the Three Alternative Curves  

 Simple Circular  

Curve 

Spiral-Circular 

Curve 

Elliptical 

Curve 

Length 2456 ft. 2452 ft. 2319 ft. 

Right-Of-Way 5.64 acres 5.33 acres 5.81 acres 

 
Figure 8. Final Profile: Elliptical curve vs. circu lar curve.  
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Figure 9. Final Profile. Elliptical curve vs. spiral-circular curve. 

 

 

 


