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Abstract  

In the present manuscript, an investigation on synchronization, anti -synchronization and hybrid-

synchronization behavior of a double pendulum under the effect of external forces using active control technique based 

on the Lyapunov stability theory and the Routh-Hurwitz criteria, have been made. The designed controller with a new 

choice of co-efficient matrix of the error-dynamics are found to be effective in the stabilizat ion  of error states at the 

origin, thereby achieving synchronization between the states variables of two dynamical  systems under consideration. 

Numerical simulations have been presented to illustrate the effectiveness  of the proposed control techniques using 

mathematica. 
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1 Introduction 
Classically, synchronization means adjustment of rhythm of self-sustained periodic oscillations due to their 

weak interaction and this adjustment can be described in terms of phase-locking and frequency entrainment. In the 

modern context we call such type of objects as rotators and chaotic systems. The history of synchronization actually 

goes back to the 17th century. In 1673, when the famous Dutch scientist Huygens [1] observed weak synchronization of 

two double pendulum clocks, which is about two model shape of vibration. He had invented shortly  before: “It is quite 

worth noting that when we suspended two clocks so constructed from two hooks imbedded in the same wooden beam, 

the motion of each pendulum in opposite swings were so much in agreement and sound of each was always heard 

simultaneously”. Furthermore he described that if one of the pendulum was disturbed by interference, it would return 

back to its normal state. This was first discovery of synchronization. After careful observation, finally he found that the 

cause of this is due to motion of the beam, even though this is hardly perceptible [2].Synchronization of periodic self-

sustained oscillators are based on the existence of a special variable, called phase. If the coupled two pendulums have 

small oscillations with the same initial conditions or the zero initial phase difference, the two pendulums will be 

synchronized. If the in itial phase difference is 180◦, the anti-synchronization of two pendulums can be observed. For a 

general case, the motion of the two pendulums will be combined by the synchronization and anti-synchronization 

modes of vibration.The recent progress on the Huygens synchronization was presented in [3].  

 

Chaotic synchronization did not attract much attention until Pecora and Carroll [4] introduced a method to 

synchronize two identical chaotic systems with different init ial conditions in 1990. From then on, enormous studies 

have been done by researchers on the synchronization of dynamical systems. In 1994, Kapitaniak [5] used continuous 

control to achieve a synchronization of two chaotic systems. In 1996, Peng et al.[6] presented chaotic synchronization 

of n-dimensional system. In the past few decades, the concept of synchronization from the traditional point of view has 

also been extended. In 2002, Boccaletti et al. [7] gave a review on the synchronization of chaotic systems and clarified 

definit ions and concepts of dynamical system synchronization. In 2004, Compos and Urias [8] mathematically 

described multimodel synchronization with chaos, and introduced a multi -valued synchronized function. In 2005, Chen 

[9] investigated the synchronization of two different chaotic systems. Such synchronization is based on the error 

dynamics of the slave and master systems. The active control functions were used to remove non -linear terms, and the 

Lyapunov function was used to determine the stability of the synchronization. Lu and Cao [10] used the similar 

technique of Chen [9] to discuss the adaptive complete synchronization of two identical or different chaotic systems 

with unknown parameters. Thus in the continuation, a wide variety of methods have successfully been applied to 

achieve synchronization of chaotic systems. These methods including adaptive control [11, 12], backstepping design 

[13, 14, 15], active control [16, 17, 18] nonlinear control [19, 20, 21, 22] and observer based control method [23, 24]. 

Using these methods, numerous synchronization problem of well-known chaotic systems such as Lorenz, Chen, L¨u 

and R¨ossler system have been worked on by many researchers. Recently, Ge et al. [25, 26, 27, 28, 29, 30] also studied 
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chaotic synchronization of many practical physical systems and obtained interesting results. Among these methods, 

chaos synchronization using active control has recently been widely accepted because it can be used to synchronize 

identical as well as non-identical systems. In order to achieve stable synchronization this method has been applied to 

many practical systems such as the electronic circuits, in which model there is third order “Jerk” equation [31], Lore nz, 

Chen and Lu system [32], geophysical systems [33], nonlinear equations waves (Lorenz Stenflo system)[34], Van -der 

Pol-duffing oscillator [35], forced damped pendulum [36], RCL-shunted Josephson function [37], modified project ive 

synchronization [38]. In this paper, we have applied the active control techniques based on Lyapunov stability theory 

and Routh-Hurwitz criteria to study the synchronization, anti-synchronization and hybrid synchronization behavior of a 

double pendulum under the effect of external forces. It is well known that double pendulum is a chaotic system, its long 

term behavior can not be predicted. Slight changes in the initial conditions can result in drastic long term differences. If 

one starts the system at slightly different angles, perhaps by fraction of a degree, the resulting motion will not look 

same in  the long run. In synchronization, two systems (master and slave) are synchronized and start with different 

initial conditions. The problem may be treated as the design of control laws for full chaotic slave system using known 

informat ion of the master system so as to ensure that the controlled receiver synchronizes with the master system. 

Hence, the slave chaotic system completely traces the dynamics of the master system in the course of time. The aim of 

this study is to investigate the synchronization, anti-synchronization and hybrid synchronization of a double pendulum 

under the effect of external forces.  

 

2 Equations of Motion Of Double Pendulum Under The Effect Of External Forces 
In the figure given below, a double pendulum consists of two point masses m1 and m2 connected by massless 

rods to the pivot point. Let ℓ1 and ℓ2 are the lengths of rods respectively and θ1 and θ2 be the angles that two rods make 

with the vertical. Let F be the external force exerted on the pivot point by pendulum and ϕ be the angle that F makes 

with rod ℓ1. 

 
Fig. 1 
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3  Synchronization Via Active Control 
The systems defined by (1) and (2) can be written as a system of four first order differential equat ions, 

the four variables are introduced as below: 

 

 
 

After expanding trigonometrical terms and neglecting higher order terms only (for reducing non -linearity) 

in the above equations, we get: 

 

 
 

where ui(t), i = 1, 2, 3, 4 are control functions to be determined. Now defining error functions such that 

in synchronization state lim ei(t) →0, i = 1, 2, 3, 4. 

                                       t→∞  

 

e1 = y1 - x1 

e2 = y2 - x2 

e3 = y3 - x3 

e4 = y4 -  x4 

 

and the error dynamics are expressed as: 
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The error dynamical system (7) to be controlled must be a linear system with control inputs. Therefore we redefine the 

control functions such as to eliminate non-linear terms in e1(t), e2(t), e3(t) and e4(t) of equation (7) as follows: 

 

 
using (7) and (8), we have 

 
 

where B is 4×4 co-efficient matrix. According to the Lyapunov stability theory and Routh-Hurwitz criteria, eigen-

values of the co-efficient matrix of error system must be real or complex with negative real parts. We can choose 

elements of matrix arbit rarily; there are several ways to choose in order to satisfy Lyapunov and Routh-Herwitz criteria. 

Consequently, for 
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                                      (11) 

becomes a matrix with eigen values having negative real parts and equation (10) reduces to 

 

 

 

Thus, by Lyapunov stability theory, the error dynamical system (12) is stable. 

 

4 .  Numerical Simulation For Synchronization 

For the parameters involved in system under investigation, T1 = 1, T2 = 2, ℓ1 = 1, ℓ2 = 2, m1 = 1,m2 = 1 

and g = 9.8m/s2 with the init ial conditions for master system and slave system 

 

[x1(0), x2(0), x3(0), x4(0)] = [3.5, 0.4,- 3.5, 0.4] 

 

And 

 

[y1(0), y2(0), y3(0), y4(0)] = [1.5, 0.2,- 0.5, 0.8] 

 

respectively. We have simulated the system under consideration using mathemat ica. Phase portraits and time series 

analysis of master and slave system are the witness of irregular behavior of system (see figures 2, 3, 4 and 5). For  

 

[e1(0), e2(0), e3(0), e4(0)] = [- 2, 0.2, 3, 0.4] 

 

convergence diagrams of errors are the witness of achieving synchronization between master and slave systems (see 

figure 6). 

 

5 Anti-Synchronization Via Active Control 
In order to formulate the active controllers fo r anti-synchronization we need to redefine the erro r functions as, 

e1(t) = y1 + x1, e2(t) = y2 + x2, e3(t) = y3 + x3, e4(t) = y4 + x4. 

 

Accordingly, error dynamics are: 

 

(12) 
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In order to express (13) as only linear terms in e1(t ), e2(t), e2(t) and e4(t), we redefine the control functions 

as follows: 

 

 
 

Furthermore, as in the previous case we choose v1(t), v2(t), v3(t) and v4(t) as fo llows: 

 

 
 

where B is given by (11) whose eigen values have negative real parts. Thus by Lyapunov stability theory, 

the error dynamical system (15) is stable. 
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6  Numerical Simulation For Anti-Synchronization 
For the parameters involved in system under investigation, T1 = 1, T2 = 2, ℓ1 = 1, ℓ2 = 2, m1 = 1, m2 = 1 and g 

= 9.8m/s2 with the in itial conditions for master and slave systems 

 

[x1(0), x2(0), x3(0), x4(0)] = [3.5, 0.4,-3.5, 0.4] 

and 

 

[y1(0), y2(t), y3(0), y4(0)] = [1.5, 0.2,-0.5, 0.8] 

respectively. We have simulated the system under consideration using mathematica. Phase portraits and 

time series analysis of master system and slave system are the witness of irregular  behavior of system (see 

figures 2, 3, 4 and 5). For 

 

[e1(0), e2(0), e3(0), e4(0)] = [5, 0.6,4.0, 1.2] 

 

convergence diagram of errors are the witness of achieving anti-synchronization between master and slave 

system (see figure 7). 

 

7  Hybrid Synchronization Via Active Control 
The idea of the hybrid synchronization is to use the output of the master system to control the slave system so 

that the odd outputs of the two systems are completely synchronized, while the even outputs of the two systems are 

anti-synchronized so that both complete synchronization and anti-synchronization persist in the synchronization of 

master and slave systems. In order to formulate the active controllers for “hybrid synchronization” we are redefining the 

error functions in the following three ways: 
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The error dynamical system (16) to be controlled must be a linear system with control inputs. Therefore we redefine the 

control functions such as to eliminate non-linear terms in e1(t), e2(t), e3(t) and e4(t) of (16) as follows: 

 

 
and (18) reduces to 

 
where B is given by (11), whose eigen-values have negative real parts. Thus, by Lyapunov stability theory, 

the error dynamical system (18) is stable. 
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8  Numerical Simulation For Hybrid Synchronization 
For the parameters involved in system under investigation, T1 = 1, T2 = 2, ℓ1 = 1, ℓ2 = 2, m1 = 1, m2 = 1 

and g = 9.8m/s2 with the init ial conditions of master and slave systems  

 

[x1(0), x2(0), x3(0), x4(0)] = [3.5, 0.4,-3.5, 0.4], 

 

and 

 

[y1(0), y2(0), y3(0), y4(0)] = [1.5, 0.2,-0.5, 0.8] 

 

respectively. 

 

We have simulated the system under consideration by using mathemat ica. Phase portraits and time  

series analysis of master and slave system are the witness of irregulars behavior of the system (see figures 2,  

3, 4 and 5) and fo r 

 

[e1(0), e2(0), e3(0), e4(0)] = [-2, 0.6, 3, 1.2] 

 

convergence diagram of errors are the witness of achieving hybrid synchronization between master and  

slave system (see figure 8). Figures are given below: 
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9  Conclusion 
An investigation on synchronization, anti-synchronization and hybrid synchronization of the double pendulum 

under the effect of external forces via active control technique based on Lyapunov stability theory and Routh -Hurwitz 

criteria have been made. The results are validated by numerical simulations using mathemat ica.  
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