

Statistical Distributions involving Meijer's G-Function of matrix Argument in the complex case

¹, Ms. Samta ², Prof. (Dr.) Harish Singh

¹Research Scholar, NIMS University ²Professor Department of Business Administration, Maharaja Surajmal Institute, Guru Gobind Singh Indraprastha University, Delhi

Abstract:

The aim of this paper is to investigate the probability distributions involving Meijer's g Functions of matrix argument in the complex case. Many known or new Result of probability distributions have been discussed. All the matrices used here either symmetric positive definite or hermit ions positive definite.

I Introduction: The G-Function

The G-functions as an inverse matrix transform in the following form given by Saxena and Mathai (1971).

$$\int_{z>0} |\tilde{z}|^{\delta-m} G_{r,s}^{p,q} \left[\tilde{z} \Big|_{b_1}^{a_1} \dots a_r \right] d\overline{z}$$

$$= \frac{\prod_{j=1}^{p} r_m (b_j + \delta) \prod_{j=1}^{q} r_m (m - a_j - \delta)}{\prod_{j=p+1}^{s} r_m (m - a_j - \delta) \prod_{j=q+1}^{r} r_m (b_j + \delta)}$$

For p < q or p = q, $q \ge 1$, z is a complex matrix and $\tilde{z} > 0$, $Re(b_j + \delta) > m - 1$, (j = 1, ..., p) and $Re(a_j + \delta) < m - 1$ (j = 1, ..., q). the gamma products are such that the poles of $\prod_{j=1}^{p} r_m(b_j + \delta)$ and those of $\prod_{j=1}^{p} r_m(m - a_j - \delta)$ are separated.

II. The Distribution

In the multivariate Laplace type integral

$$I = \int_{x>0} etr(-\tilde{B}\tilde{X}) |\det \tilde{X}|^{a-m} \phi(\tilde{X}) d\tilde{X}$$

taking $\phi(\tilde{X}) = \tilde{G}_{r,s}^{p,q} \left[\tilde{R}\tilde{X}\Big|_{b_{1}}^{a_{1}} \dots a_{r}\right]$
The integral reduces to
$$I = \left|\det(\tilde{B})\right|^{-a} \tilde{G}_{r+1,s}^{p,q+1} \left[\tilde{R}\tilde{B}^{-1}\Big|_{b_{1}}^{m-a, a_{1}} \dots a_{r}\right] \qquad 2.1$$

For $Re(-a + \min b_{i}) > m(i = 1, 2, 3, ..., n)$ and \tilde{R} is hermitia

For $Re(-a + \min b_j) > m(j = 1, 2, 3, ..., p)$ and \tilde{B} is hermitian positive definite matrix and \tilde{R} is an arbitrary complex symmetric m X m matrix.

The result (2.1) is a direct consequence of the result Mathai and Saxena (1971, 1978). [Notation $etr(-\mathcal{B}\mathcal{R}) = exp[tr(X)]$ for exponential to the power tr(X)]

Thus the function

$$f(\vec{x}) = f(\vec{x}; a, a_1, ..., b_1, ..., b_s; \vec{B}, \vec{R}) =$$

$$etr(-\vec{B}\vec{X}) det x|^{a-m} \vec{G}_{r,s}^{p,q} [\vec{R}\vec{X}|_{b_1,...,b_s}^{a_1,...,a_r}]$$

$$|\vec{B}|^{-a} \vec{G}_{r+1,s}^{p,q+1} [\vec{R}\vec{B}^{-1}|^{m-a, a_1,...,a_r}]$$
where $Re(-a + \min b_j) > m - 1$
= 0, else where
provides a probability density function (p.d.f)
2.1 Special Cases
Case (i)
Replacing $\vec{R} = \vec{I}$, letting \vec{B} tends to null matrix and using the result due to Mathai (1977)

$$\int_{\substack{X=X>0}} |\det X|^{a-m} \mathcal{G}_{r,s}^{m,n} [X]_{b_{1}}^{a_{1},\dots,a_{r}}] dx = \phi_{1}(a)$$
where
$$\phi_{1}(a) = \frac{\Pi_{j=1}^{p} f_{m}(b_{j}+a) \Pi_{j=1}^{q} f_{m}(m-a_{j}-a)}{\Pi_{j=q+1}^{p} f_{m}(m-b_{j}-a) \Pi_{j=q+1}^{p} f_{m}(a_{j}+a)} 2.1.1$$
Where $Re(b_{j}+a) > m; (j = 1, 2, ..., m)$
In (2.1.1), we get
$$f(X) = [\phi_{1}(a)]^{-1} = |\det(X)|^{a-m} \mathcal{G}_{r,s}^{p,q} [X]_{b_{1},\dots,b_{s}}^{a_{1}} 2.1.2$$
where $Re(b_{j}+a) > m; (j = 1, 2, ..., m)$
 $Re(a_{j}+a) > m; (j = 1, ..., n), X = X' > 0 = 0, \text{elsewhere}$
Case (ii)
Putting $p = 1, q = 0, r = 0, s = 1, B = I, \text{ then } (2.1.1) \text{ takes the form}$
 $I = \int_{X>0} etr(-X) |\det X|^{a-m} \mathcal{G}_{0,1}^{b} [RX|a] dX$
where $X = X' > 0$
Using (2.1.4) in (2.1.3), we have
 $I = |\det R|^{a} \int_{X>0} e^{-tr(R+1)X} |\det(X)|^{a+a-m} dX$
(2.1.5)
The integral reduces to
 $= |\det R|^{a} f_{X>0} e^{-tr(R+1)X} \frac{|\det(X)|^{a+a-m}}{f_{m}(a+a)|\det(I+R)|^{-(a+a)}}$
(2.1.6)
where $Re(a + a) > m, Re(I+R) > 0, X = X' > 0$
 $= 0, elsewhere$
Which is a gamma distribution.
Taking $(a + a) = m, (2.2.6)$ takes the form
 $f(X) = \frac{e^{-tr(x+R)X}}{f_{m}(m)|\det(I+R)|^{-m}}$
2.1.7
where $Re[(I+R) > 0, X = X' = 0$
 $= 0, elsewhere$

Taking $(a + a) = \frac{n}{2}, (\tilde{l} + \tilde{R}) = \frac{1}{2}\tilde{T}^{-1}, (2.1.6)$ yields the wishart distribution with scalar matrix \tilde{T} and n degree of freedom.

$$f(\vec{X}) = \frac{e^{-tr(\frac{T-1}{2})} |\det \vec{X}|_{2}^{n} - m}{\tilde{r}_{m}(\frac{n}{2}) |\frac{1}{2}\vec{T}^{-\frac{1}{2}}|^{-\frac{n}{2}}}{\tilde{r}_{m}(\frac{n}{2}) |\frac{1}{2}\vec{T}^{-\frac{1}{2}}|^{-\frac{n}{2}}}$$

$$= \frac{2^{-\frac{n}{2}} |\det \vec{X}|_{2}^{n} - m_{e}^{-tr(-\frac{1}{2}T-1\vec{X})}}{\tilde{r}_{m}(\frac{n}{2}) |t|^{\frac{n}{2}}}$$
2.1.8
for $\vec{X} = \vec{X}' > 0, T > 0, m \le n$
= 0, elsewhere
Case (iii)
Putting $p = 1, q = 0, r = 1, s = 1$, then (2.1.1) takes the form
$$\int_{\vec{X} > 0} etr(-\vec{B}\vec{X}) |\det \vec{X}|^{a-m} \vec{G}_{1,1}^{1,0} [\vec{R}\vec{X}]_{b}^{a}] d\vec{X}$$
2.1.9
We know that
$$\mathcal{G}_{0,1}^{1,0} [\vec{R}\vec{X}]_{b}^{a}] = \frac{1}{\tilde{r}_{m}(a-b)} |\det(\vec{X})|^{a} |\det(\vec{I} - \vec{X})|^{a-b-m}$$
2.1.10 for $0 < \vec{X} < \vec{I}, Re(a-b) > m$
Using (2.2.10) in (2.2.9) we have
$$\vec{X} \frac{|\det(\vec{R}|^{b})}{\tilde{r}_{m}(a-b)} \int_{0 < \vec{X} < \vec{I}} etr(-\vec{B}\vec{X}) |\det(\vec{R})|^{b+a-m} |\det(\vec{I} - \vec{X})|^{a-b-m} d\vec{X}'$$
2.1.11

Issn 2250-3005(online)

Page 103

The integral reduces to $I = \left| \det \hat{X} \right|^{b} \frac{e_{m}(b+a)}{e_{m}(a-b)} \frac{1}{4} \tilde{F}_{1}\left(b+a;a+a;-\tilde{B}\right)$ For Re(b+a) > m-1, Re(a+a) > m-12.1.12 = 0, else where The result (2.1.12) is a direct consequence of the result e-tr(XZ) $|\det \tilde{X}|^{\delta - m} |\det(\tilde{I} - \tilde{X})|^{p-\delta - m} d\tilde{X}$ $= \frac{f_m(\delta)f_m(p-\delta)}{f_m(p)} \, _1F_1[\delta;p;-z]$ 2.1.13 For $Re(\delta) > m - 1$, Re(p) > m - 1, $Re(p - \delta) > m - 1$ Thus the function (2.1.1) takes the form $f(\vec{X}) = \frac{\tilde{r}_m(a+a)etr(-\vec{B}\vec{X})|\det X|^b + a - m}{\tilde{r}_m(a-b)\tilde{r}_m(b+a)|_1F_1|(b+a;a+a;-\vec{B})}$ for $R(a-) > m-1, Re(b+a) > m-1, Re\vec{B} > 0, \vec{X} = \vec{X}' = 0$ = 0, elsewhere 2.1.14 Case (iv) Putting p = 1, q = 1, r = 1, s = 1, a = m - a + bThen (2.1.1) takes the form as $\int_{\tilde{X}>0} etr\left(-\tilde{B}\tilde{X}\right) |\det X|^{a-m} \tilde{G}_{1,1}^{11} \left[\tilde{R}\tilde{X}\Big|_{h}^{m-a+b}\right] d\tilde{X}$ 2.1.15 for Re(b, a - b) > m - 1, X = X' = 02.1.16 Using (2.1.16) in (2.1.15) we have $= \tilde{r}_m(a) \left| \det(\tilde{R}) \right|^b \times \int etr(-\tilde{B}\tilde{X}) \left| \det(\tilde{X}) \right|^{a+b-m} \left| \det(I + \tilde{R}\tilde{X})^{-a} d\tilde{X}.$ The integral reduces to $I = \tilde{r}_{m}(a) |\det(\tilde{R})|^{b} \tilde{r}_{m}(a+b)|B|^{-(a+b)} {}_{2}F_{0}[a,a+b;-;-\tilde{R}\tilde{B}^{-1}]$ For $Re(\tilde{B}) > 0$, Re(a + b) > m - 12.1.17 = 0; elsewhere. The result (2.1.17) is a direct consequence of the result $|\det X|^{a-m} e^{-tr(\tilde{\beta}\tilde{X})} {}_1F_0[a;-;-\tilde{R}\tilde{X}] d\tilde{X} = \tilde{r}_m(a)|\beta|^{-a} {}_2F_0[a;a;-;-\tilde{R}\tilde{\beta}^{-1}]$ x >0 For $Re(\tilde{B}) > 0$, Re(a + b) > mWhere $\left|\det(\tilde{I} + \tilde{R}\tilde{X})\right|^{-a} = {}_{1}F_{0}[a; -; -\tilde{R}\tilde{X}]$ Thus the p.d.f. (2.1.1) takes the form $f(\tilde{X}) = \frac{etr(-\tilde{B}\tilde{X}|\det[\tilde{X}]|^{a+b}-m|\det[\tilde{I}+\tilde{R}\tilde{X}]|^{-a}}{\tilde{r}_m(a+b)|\beta|^{-(a+b)}{}_2F_0[a,a+b;-;-\tilde{R}\tilde{\beta}^{-1}]}$ For $Re(\tilde{B}) > 0$, Re(a+b) > m-1, $Re(\tilde{B}) > Re(\tilde{R})$, $\tilde{X} = \tilde{X}' > 0$ 2.1.18 = 0: elsewhere. Replacing $-\tilde{R}$ with \tilde{R} and \tilde{B} with \tilde{R} , then (2.2.18) takes the form as $f(\tilde{X}) = \frac{etr(-\tilde{R}\tilde{X}|\det(\tilde{X})|^{a+b-m}|\det(\tilde{I}-\tilde{R}\tilde{X}|^{-a})}{f_m(a+b)|\det\tilde{R}|^{-(a+b)}{}_2F_0[a,a+b;-;I]}$ For $Re(\tilde{R}) > 0, Re(a + b) > m - 1, \tilde{X} = \tilde{X}' > 0$ 2.1.19 = 0; elsewhere. Case (v) Putting p = 1, q = 0, r = 0, s = 22.1.20 Then (2.1.1) takes the form as $I = \int_{\tilde{X}>0} etr \left(-\tilde{B}\tilde{X} \middle| \det(\tilde{X}) \middle|^{a-m} \tilde{G}_{0,2}^{12} [\tilde{R}\tilde{X} \middle| a, b] d\tilde{X}$ 2.1.21 We know that $\mathcal{G}_{0,2}^{10}[\vec{R}\vec{X}|a,b] = \frac{|\det \vec{x}|^{a} |\det \vec{x}|^{a}_{0}F_{1}[-,m+a-b;-;\vec{R}\vec{x}]}{|det \vec{x}|^{a}_{0}F_{1}[-,m+a-b;-;\vec{R}\vec{x}]}$ 2.1.22 $f_m(m+a-b)$ Issn 2250-3005(online) December | 2012

For $Re(a - b) > -1$, $\hat{X} = \hat{X}' > 0$		
Making use of $(2.1.22)$ in $(2.1.21)$ we get		
$I = \frac{ \det R ^{-}}{\tilde{r}_m(m+a-b)} \int \det \left(-\tilde{B}\tilde{X} \left \det(\tilde{X})\right ^{a-a+m}\right)$		
$ \begin{array}{c} \hat{X} > 0 \\ \times _{1}F_{1}\left[-;m+a-b;-\hat{R}\hat{X}\right]d\hat{X} \\ \det \hat{R} ^{a}\hat{r}_{m}(a+a) \left[1 \times 1^{-(a+a)} - c \right] \\ \end{array} $		
$= \frac{1}{f_m(m+a-b)} \times [\beta \qquad {}_{1}F_1(a+a;m+a-b;-RB^{-1})]2.1.23$		
for $\operatorname{Re} \tilde{B} > 0, \operatorname{Re}(a+a) > m-1$		
Thus the p.d.f. (2.2.1) takes the form		
$f(\vec{X}) = \frac{etr(-BX)[\det X]^{u+u-m} oF_1[-;m+a-b;-RX]}{e_1(a+a)[\det X]^{(a+a)} oF_1[-;m+a-b;-RX]}$	2.1.24	
For $Re \vec{B} > 0$ $Re(a) > m - 1$ $Re \vec{B} > Re(\vec{B}) \vec{X} = \vec{X}' > 0$		
= 0: elsewhere		
Case (vi)		
Putting $p = 1$, $q = 1$, $r = 1$, $s = 2$, then (2.1.1) takes the form		
$\int_{\mathcal{S}} dtr \left(-\tilde{B}\tilde{X}\right) \left \det \tilde{X}\right ^{a-m} \tilde{C}^{12}_{12} \left[\tilde{B}\tilde{X}\right]^{a} = d\tilde{X}$	2.1.25	
$y_{x>0}$ but (b_{x}) [about] $b_{1,2}$ [h_{x} [b,c] and b_{x}	2.1.20	
$\beta_{12} \left[\sigma \varphi^{[a]} \right] = \gamma \left(- \frac{1}{2} \right) \left[1 + \varphi^{[a]} \right] = \gamma^{[a]}$	0.1.06	
$G_{1,2}[KX _{b'c}] = r_m(m-a+b) \det X \det X $	2.1.26	
$\times_1 F_1[m-a+b;m+b-c;-RX]$	2.1.27	
For $Re(b-c,b-a) > -1$		
Using $(2.1.26)$ in $(2.1.27)$ we get		
$= \tilde{r}_{m}(m-a+b) \left \det \tilde{R} \right ^{\beta} \int \operatorname{etr} \left(-\tilde{B} \tilde{X} \right) \left \det \tilde{X} \right ^{a+\beta-m} \times {}_{1}F_{1}(m-a-b) \left \det \tilde{X} \right ^{\alpha+\beta-m} $	$+b;m+b-c;-\hat{R}$	X
<i>\$</i> ≥0		
2.1.28		
$= \tilde{r}_m(m-a+b) \det R \tilde{r}_m(a+\beta) \det R $		
$\times {}_{2}F_{1}[m-a+b;a+\beta;m+b-c;-RB^{-1}]$	2.1.29	
For $Re(B) > 0$, $Re(a + \beta) > m - 1$		
The result (2.2.29) is a direct consequence of the result		
$\left \det \tilde{R}\right ^{a-m} e^{-tr(\tilde{B}\tilde{X})} {}_{1}F_{1}[a;b;-\tilde{R}\tilde{X}]d\tilde{X}$		
<i>X</i> >0		
$= \tilde{r}_{e}(a) \left \det(\tilde{B}) \right ^{-\beta} E[a;a;b;-\tilde{B}\tilde{B}^{-1}]$	2 1 30	
$For Pa(\vec{P}) > 0 Pa(a) > m - 1 \vec{Y} - \vec{Y} > 0 Pa(\vec{P}) > Pa(\vec{P})$	2.1.50	
Then the n d f (2,1,30) takes the form as		
$etr(-\hat{B}\hat{X}) \det \hat{X} ^{a+\beta-m} e^{F_1[*]}$	0.1.01	
$f(X) = \frac{1}{\tilde{r}_m(a+\beta) \det \hat{X} ^{a+\beta-m} F_1[\bullet\bullet]}$	2.1.31	
Where ${}_{1}F_{1}[*] = {}_{1}F_{1}[m-a+b,m+b-c;-\tilde{R}\tilde{X}]$		
${}_{2}F_{1}[**] = {}_{2}F_{1}[m-a+b,m+\beta;m+b-c;-\tilde{R}\tilde{\beta}^{-1}]$		
$ {}_{2}F_{1}[**] = {}_{2}F_{1}[m-a+b,m+\beta;m+b-c;-\tilde{R}\tilde{\beta}^{-1}] $ For $Re(\tilde{B}) > 0, Re(a+\beta) > m-1, Re(\tilde{B}) > Re(\tilde{R}), \tilde{X} = \tilde{X}' > 0 $		
$ {}_{2}F_{1}[**] = {}_{2}F_{1}[m-a+b,m+\beta;m+b-c;-\tilde{R}\tilde{\beta}^{-1}] $ For $Re(\tilde{B}) > 0, Re(a+\beta) > m-1, Re(\tilde{B}) > Re(\tilde{R}), \tilde{X} = \tilde{X}' > 0 $ = 0; elsewhere,		
${}_{2}F_{1}[**] = {}_{2}F_{1}[m-a+b,m+\beta;m+b-c;-\tilde{R}\tilde{\beta}^{-1}]$ For $Re(\tilde{B}) > 0$, $Re(a+\beta) > m-1$, $Re(\tilde{B}) > Re(\tilde{R})$, $\tilde{X} = \tilde{X}' > 0$ = 0; elsewhere, Replacing \tilde{B} with - \tilde{R} , (2.1.31) takes the form		
${}_{2}F_{1}[**] = {}_{2}F_{1}[m-a+b,m+\beta;m+b-c;-\tilde{R}\tilde{\beta}^{-1}]$ For $Re(\tilde{B}) > 0, Re(a+\beta) > m-1, Re(\tilde{B}) > Re(\tilde{R}), \tilde{X} = \tilde{X}' > 0$ $= 0; elsewhere,$ Replacing \tilde{B} with - \tilde{R} , (2.1.31) takes the form $f(\tilde{X}) = \frac{etr(-\tilde{R}\tilde{X}) \det \tilde{X} ^{a+\beta-m} {}_{1}F_{1}[+]}{2}$	2.1.32	
$ {}_{2}F_{1}[**] = {}_{2}F_{1}[m-a+b,m+\beta;m+b-c;-\tilde{R}\tilde{\beta}^{-1}] $ For $Re(\tilde{B}) > 0, Re(a+\beta) > m-1, Re(\tilde{B}) > Re(\tilde{R}), \tilde{X} = \tilde{X}' > 0 $ = 0; elsewhere, Replacing \tilde{B} with - \tilde{R} , (2.1.31) takes the form $f(\tilde{X}) = \frac{etr(-\tilde{R}\tilde{X}) \det \tilde{X} ^{a+\beta-m} {}_{1}F_{1}[+]}{\tilde{r}_{m}(a+\beta) \det \tilde{R} ^{(a+\beta)} {}_{2}F_{1}[++]} $	2.1.32	
${}_{2}F_{1}[**] = {}_{2}F_{1}[m-a+b,m+\beta;m+b-c;-\hat{R}\hat{\beta}^{-1}]$ For $Re(\hat{B}) > 0$, $Re(a+\beta) > m-1$, $Re(\hat{B}) > Re(\hat{R}), \hat{X} = \hat{X}' > 0$ = 0; elsewhere, Replacing \hat{B} with - \hat{R} , (2.1.31) takes the form $f(\hat{X}) = \frac{etr(-\hat{R}\hat{X}) \det \hat{X} ^{a+\beta-m} {}_{1}F_{1}[+]}{f_{m}(a+\beta) \det \hat{R} ^{(a+\beta)} {}_{2}F_{1}[++]}$ Where ${}_{4}F_{1}[+] = {}_{4}F_{1}[m-a+b,m+b-c;-\hat{\beta}\hat{X}]$	2.1.32	
${}_{2}F_{1}[**] = {}_{2}F_{1}[m-a+b,m+\beta;m+b-c;-\hat{R}\hat{\beta}^{-1}]$ For $Re(\hat{B}) > 0$, $Re(a+\beta) > m-1$, $Re(\hat{B}) > Re(\hat{R})$, $\hat{X} = \hat{X}' > 0$ = 0; elsewhere, Replacing \hat{B} with - \hat{R} , (2.1.31) takes the form $f(\hat{X}) = \frac{etr(-\hat{R}\hat{X}) \det \hat{X} ^{a+\beta-m} {}_{1}F_{1}[+]}{f_{m}(a+\beta) \det \hat{R} ^{(a+\beta)} {}_{2}F_{1}[++]}$ Where ${}_{1}F_{1}[+] = {}_{1}F_{1}[m-a+b,m+b-c;-\hat{\beta}\hat{X}]$ ${}_{2}F_{1}[++] = {}_{2}F_{1}[m-a+b,a+\beta;m+b-c;I]$	2.1.32	
$ {}_{2}F_{1}[**] = {}_{2}F_{1}[m - a + b, m + \beta; m + b - c; -\vec{R}\vec{\beta}^{-1}] $ For $Re(\vec{B}) > 0, Re(a + \beta) > m - 1, Re(\vec{B}) > Re(\vec{R}), \vec{X} = \vec{X}' > 0 $ $ = 0; elsewhere, $ Replacing \vec{B} with $-\vec{R}$, (2.1.31) takes the form $ f(\vec{X}) = \frac{etr(-\vec{R}\vec{X}) \det \vec{X} ^{a+\beta-m}F_{1}[+]}{\vec{r}_{m}(a+\beta) \det \vec{R} ^{(a+\beta)}F_{1}[++]} $ Where ${}_{1}F_{1}[+] = {}_{1}F_{1}[m - a + b, m + b - c; -\vec{\beta}\vec{X}] $ $ {}_{2}F_{1}[++] = {}_{2}F_{1}[m - a + b, a + \beta; m + b - c; I] $ For $Re(\vec{R}) > 0, Re(a + \beta) > m - 1, Re(\vec{R}) > Re(\vec{B}), \vec{X} = \vec{X}' = 0 $	2.1.32	
$ {}_{2}F_{1}[**] = {}_{2}F_{1}[m-a+b,m+\beta;m+b-c;-\tilde{R}\tilde{\beta}^{-1}] $ For $Re(\tilde{B}) > 0$, $Re(a+\beta) > m-1$, $Re(\tilde{B}) > Re(\tilde{R})$, $\tilde{X} = \tilde{X}' > 0 $ = 0; elsewhere, Replacing \tilde{B} with - \tilde{R} , (2.1.31) takes the form $ f(\tilde{X}) = \frac{etr(-\tilde{R}\tilde{X}) \det \tilde{X} ^{a+\beta-m} {}_{1}F_{1}[+]}{\tilde{r}_{m}(a+\beta) \det \tilde{R} ^{(a+\beta)} {}_{2}F_{1}[++]} $ Where ${}_{1}F_{1}[+] = {}_{1}F_{1}[m-a+b,m+b-c;-\tilde{\beta}\tilde{X}] $ ${}_{2}F_{1}[++] = {}_{2}F_{1}[m-a+b,a+\beta;m+b-c;I] $ For $Re(\tilde{R}) > 0$, $Re(a+\beta) > m-1$, $Re(\tilde{R}) > Re(\tilde{B})$, $\tilde{X} = \tilde{X}' = 0$ We know that	2.1.32	
$ {}_{2}F_{1}[**] = {}_{2}F_{1}[m - a + b, m + \beta; m + b - c; -\vec{R}\vec{\beta}^{-1}] $ For $Re(\vec{B}) > 0, Re(a + \beta) > m - 1, Re(\vec{B}) > Re(\vec{R}), \vec{X} = \vec{X}' > 0 $ = 0; elsewhere, Replacing \vec{B} with - \vec{R} , (2.1.31) takes the form $f(\vec{X}) = \frac{etr(-\vec{R}\vec{X}) \det \vec{X} ^{a+\beta-m} \cdot F_{1}[+]}{f_{m}(a+\beta) \det \vec{R} ^{(a+\beta)} \cdot F_{1}[++]} $ Where ${}_{1}F_{1}[+] = {}_{1}F_{1}[m - a + b, m + b - c; -\vec{\beta}\vec{X}] $ ${}_{2}F_{1}[++] = {}_{2}F_{1}[m - a + b, a + \beta; m + b - c; I] $ For $Re(\vec{R}) > 0, Re(a + \beta) > m - 1, Re(\vec{R}) > Re(\vec{B}), \vec{X} = \vec{X}' = 0 $ We know that ${}_{2}F_{1}[a, b, c; I] = \frac{f_{m}(c)f_{m}(c-a-b)}{2} $	2.1.32	
$ {}_{2}F_{1}[**] = {}_{2}F_{1}[m - a + b, m + \beta; m + b - c; -\hat{R}\hat{\beta}^{-1}] $ For $Re(\hat{B}) > 0, Re(a + \beta) > m - 1, Re(\hat{B}) > Re(\hat{R}), \hat{X} = \hat{X}' > 0 $ = 0; elsewhere, Replacing \hat{B} with $-\hat{R}$, (2.1.31) takes the form $f(\hat{X}) = \frac{etr(-\hat{R}\hat{X}) \det \hat{X} ^{a+\beta-m}F_{1}[+]}{\hat{r}_{m}(a+\beta) \det \hat{R} ^{(a+\beta)}F_{1}[++]} $ Where ${}_{1}F_{1}[+] = {}_{1}F_{1}[m - a + b, m + b - c; -\beta\hat{X}] $ ${}_{2}F_{1}[++] = {}_{2}F_{1}[m - a + b, a + \beta; m + b - c; I] $ For $Re(\hat{R}) > 0, Re(a + \beta) > m - 1, Re(\hat{R}) > Re(\hat{B}), \hat{X} = \hat{X}' = 0 $ We know that ${}_{2}F_{1}[a, b, c; I] = \frac{\hat{r}_{m}(c)\hat{r}_{m}(c-a-b)}{\hat{r}_{m}(c-a)\hat{r}_{m}(c-b)} $ Making use of (2.2.232) we get	2.1.32	
$ {}_{2}F_{1}[**] = {}_{2}F_{1}[m - a + b, m + \beta; m + b - c; -\tilde{R}\tilde{\beta}^{-1}] $ For $Re(\tilde{B}) > 0, Re(a + \beta) > m - 1, Re(\tilde{B}) > Re(\tilde{R}), \tilde{X} = \tilde{X}' > 0 $ $ = 0; elsewhere, $ Replacing \tilde{B} with $-\tilde{R}$, (2.1.31) takes the form $ f(\tilde{X}) = \frac{etr(-\tilde{R}\tilde{X}) \det \tilde{X} ^{a+\beta-m} {}_{4}F_{1}[+]}{\tilde{r}_{m}(a+\beta) \det \tilde{R} ^{(a+\beta)} {}_{2}F_{1}[++]} $ Where ${}_{1}F_{1}[+] = {}_{1}F_{1}[m - a + b, m + b - c; -\tilde{\beta}\tilde{X}] $ $ {}_{2}F_{1}[++] = {}_{2}F_{1}[m - a + b, a + \beta; m + b - c; I] $ For $Re(\tilde{R}) > 0, Re(a + \beta) > m - 1, Re(\tilde{R}) > Re(\tilde{B}), \tilde{X} = \tilde{X}' = 0 $ We know that $ {}_{2}F_{1}[a, b, c; I] = \frac{\tilde{r}_{m}(C)\tilde{r}_{m}(c-a-b)}{\tilde{r}_{m}(c-a)\tilde{r}_{m}(c-b)} $ Making use of (2.2.33) in (2.2.32), we get $ {}_{2}(\tilde{\alpha}) = \prod_{n=1}^{\infty} e(\tilde{\beta}) + e^{\tilde{\alpha}} e^{\tilde{\alpha}+\beta-m} = 2 $	2.1.32	
$ {}_{2}F_{1}[**] = {}_{2}F_{1}[m - a + b, m + \beta; m + b - c; -\vec{R}\vec{\beta}^{-1}] $ For $Re(\vec{B}) > 0, Re(a + \beta) > m - 1, Re(\vec{B}) > Re(\vec{R}), \vec{X} = \vec{X}' > 0 $ $ = 0; elsewhere, $ Replacing \vec{B} with $-\vec{R}$, (2.1.31) takes the form $ f(\vec{X}) = \frac{etr(-\vec{R}\vec{X}) \det \vec{X} ^{a+\beta-m} {}_{1}F_{1}[+]}{f_{m}(a+\beta) \det \vec{X} ^{(a+\beta)} {}_{2}F_{1}[++]} $ Where ${}_{1}F_{1}[+] = {}_{1}F_{1}[m - a + b, m + b - c; -\vec{\beta}\vec{X}] $ $ {}_{2}F_{1}[++] = {}_{2}F_{1}[m - a + b, a + \beta; m + b - c; I] $ For $Re(\vec{R}) > 0, Re(a + \beta) > m - 1, Re(\vec{R}) > Re(\vec{B}), \vec{X} = \vec{X}' = 0 $ We know that $ {}_{2}F_{1}[a, b, c; I] = \frac{f_{m}(c)f_{m}(c-a-b)}{f_{m}(c-a)f_{m}(c-b)} $ Making use of (2.2.33) in (2.2.32), we get $ f(\vec{R}) = \prod_{m} etr(\vec{R}\vec{X}) \det \vec{X} ^{a+\beta-m} {}_{1}F_{1}[+] $	2.1.32 2.1.33 2.1.34	

🍘 IJCEF

 $=\frac{\tilde{r}_m(a-c)\tilde{r}_m(m+b-c-a-\beta)}{\tilde{r}_m(m+b-c)\tilde{r}_m(a-c-a-\beta)\tilde{r}_m(a+\beta)\left|\det\tilde{R}\right|^{-(a+\beta)}}$ $_{1}F_{1}[+] = _{1}F_{1}[m - a + b; m + b - c; \tilde{B}\tilde{X}]$ We know that the Kummer transformation as $_{1}F_{1}[a;b;\tilde{B}\tilde{X}] = etr(\tilde{B}\tilde{X})_{1}F_{1}[b-a;b;-\tilde{B}\tilde{X}]$ 2.1.35 Making use of (2.2.35) in (2.2.34) we get $f(\vec{X}) = \prod_{m} \operatorname{etr} \left[(\vec{R} + \vec{B}) \vec{X} \right]^{a+b-m} {}_{1}F_{1}[\#]$ 2.1.36 When $\prod_m same as above$ $_{1}F_{1}[\#] = _{1}F_{1}[a - c; m + b - c; \tilde{B}\tilde{X}]$ Where $Re(a + \beta) > m - 1, Re(m + b - c_{-} > m - 1,$ $Re(a-c-\beta) > m-1, \hat{X} = \hat{X} > 0 Re(\hat{R} + \hat{B}) > 0$ Case (vii) Putting p = 1, q = 2, r = 2, s = 2, a = -c1, b = -c2, c = a-m, a = -b The (2.1.1) takes the form $\int_{\tilde{X}>0} etr \ (-\tilde{B}\tilde{X}) \left| \det \tilde{X} \right|^{a-m} \tilde{G}_{2,2}^{12} \left[\tilde{R}\tilde{X} \right]_{b-m}^{a-c_{2}} - b \right]$ 2.1.37 Who know that? $\tilde{G}_{2,2}^{12} \left[\tilde{R} \tilde{X} \Big|_{a-m}^{1-c_{2}} - b \right]$ = $\frac{\tilde{r}_{m}(a+c_{1})\tilde{r}_{m}(a+c_{2})}{\tilde{r}_{m}(a+b)} \left| \det \tilde{X} \right|^{a-m} \times {}_{2}F_{1} \left[a+c_{1},a+c_{2};a+b;-\tilde{R} \tilde{X} \right]$ 2.1.38 For $Re(a + c_1, a + c_2, a + b) > m = 1, X = X' > 0$ Making use of (2.2.38) in (2.2.37), we get $=\frac{f_m(a+c_1)f_m(a+c_2)f_m(a+a-m)}{f_m(a+b)|\beta|^{a+a-m}} \times {}_2F_1[a+c_1,a+c_2;a+b;-\tilde{R}\tilde{X}]d\tilde{X}$ The result (2.1.39) is a direct consequence of the result $\int_{\tilde{X}>0} etr(-\tilde{B}\tilde{X}) |\tilde{X}|^{a-m} {}_{2}F_{1}[a_{1},a_{2},a;b;-\tilde{R}\tilde{B}^{-1}] = \prod_{\tilde{T}} (a) |\tilde{B}|^{-a}$ ${}_{3}F_{1}[a_{1}, a_{2}, a; b; -\tilde{R}\tilde{B}^{-1}]$ 2.1.40 $f(\vec{X}) = \frac{etr(-\vec{B}\vec{X})|\det \vec{X}|^{a+a-m-m} \cdot \mathbf{z}^{F_1}[-]}{\hat{r}_m(a+a-m)|\det \vec{B}|^{(a+a-m)} \cdot \mathbf{z}^{F_1}[-]}$ 2.1.41 Where $_{2}F_{1}[-] = _{2}F_{1}[a + c_{1}, a + c_{2}; a + b; -\vec{R}\vec{X}]$ ${}_{2}F_{1}[-] = {}_{3}F_{1}[a + c_{1}, a + c_{2}; a + a - m; a + b; -\tilde{R}\tilde{B}^{-1}]$ For $Re(\tilde{B}) > 0, Re(a - a - m) > m - 1, Re(\tilde{B}) > Re(\tilde{R}), \tilde{X} = \tilde{X}' > 0$ = 0; elsewhere. Replacing $-\vec{R}$ with \vec{R} and \vec{X} with \vec{R}^{-1} , (2.2.40) reduces to 2.1.42 $f_m(a+a-m) |\det \hat{B}|^{(a+a+m)} F_1[++]$ Where $_{2}F_{1}[+] = _{2}F_{1}[a + c_{1}, a + c_{2}; a + c; I]$ $_{3}F_{1}[++] = _{3}F_{1}[a + c_{1}, a + c_{2}; a + a - m; a + b; -\tilde{R}\tilde{B}^{-1}]$ ${}_{3}F_{1}[++] = {}_{3}F_{1}[a + c_{1}, a + c_{2}, a + a - m, a + c_{2}, a + m, a + c_{2}, a + m, a + m, a$ Here.

 $\int_{a}^{b} = \frac{\tilde{r}_{m}(a+b)\tilde{r}_{m}(b-a-c_{1}-c_{2})}{\tilde{r}_{m}(a-b-c_{1})\tilde{r}_{m}(b-c_{2})\tilde{r}_{m}(a+a-m)}$

References

- [1] Mathai AM.1997. Jacobeans of matrix Transformations and function of Matrix Argument world Scientific Publishing Co. Pvt ltd.
- [2] Mathai Am and Saxena R.K. 1971. Meijer's g Function with matrix argument, Acta, Mexicans ci-tech, 5, 85-92.
- [3] R Muirrhead RJ Aspects of multi Variate Statical theory, wicley, New york, 1983.