
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

||Issn 2250-3005(online)|| ||December||2012|| Page 256

Object-Oriented Full Function Point Analysis: An Empirical Validation

1,
Sheeba Praveen,

2,
Dr. Rizwan Beg

1,
Dept. CSE,Integral University Lucknow ,U.P

2,
 Dept .CSE & IT,Integral university Lucknow,U.P.

Abstract
this research work focuses on validation work of my proposed work to determine the functional size of real time

application at early stage. This paper will describe how to calcu late the functional size of real time system using my

proposed model that is Object Oriented Size Estimat ion Model for Real Time Application [1]. Here in this paper I am

validating my proposed model with the help of Real Time System. I am taking Human Emotion detection which is real

time software and applying OOFFPA on it. OOFFPA metrics of my proposed model will calculate the size in terms of

Function Point of this HED software and after calcu lating the size I compare this size with the size which is calculated by

other metrics. Comparisons will prove that OOFFP metrics of my proposed model is best for size measurement of real

time system.

Keywords : OOFFPA, OPA, FPA, OO, TFPCP, FFP, OOSE, UML, OOFP, SC, AS, AG, GN/SP, MX, OOMC, OOTC,

OOCC, OOUCG, OORCG, OOCECE, OOCECX, OOCICR, OOCICW, OOEI, OOEO, OOEQ, OOILF, OOEIF, OOFC.

1. INTRODUCTION
This research is focuses on the cost estimation of Real Time System and for that I choose “Human Emotion

Detection (HED)” which is a Real time system. This case study will help to validate my proposed work. In this case study

I am using OOFFP metrics and Object oriented development procedures to estimate the size and cost of HED real time

software.The HED can be applied in robotics in AI. The Robot can detect the human emot ion and act accord ingly the

situation. This code can be interfaced with the help of embedded system using some programming language.

The camera will act as a sensor which captures the image of human and analyses the image on the basis of his/her facial

expression. It detect the emotion i.e. Happy, Sad, Strange, Normal, Surprise etc. means act accordingly the situation.

Scenarios of HED are fo llowing:

1. Take an image as an input

2. Then apply skin color segmentation on an image

3. Find the largest connected region

4. Check the probability to become a face of the largest connected region

5. Convert the RGB image into Binary image

6. To detect that the image is human face or not

7. Separate the Eye and Lips from the image

8. Convert the Eye and Lips into Binary image

9. Apply the Bezier Curve on Eyes and Lips

10. Detect the human Emotion From the image

2. OBJECT ORIENTED DEVELOPMENT LIFE CYCLE
A. Object Oriented Design

In this research I follow the object oriented development life cycle to estimate size and cost of project [].

1. Object modeling Techniques

2. Dynamic modeling techniques

3. Functional modeling techniques

All three object oriented design techniques and associated models (D) are used in the proposed Size estimat ion model.

These models help to estimate the size of the project. So In this research I am applying Management Function count and

Control function count on all three models of object oriented design.

4.2.1 Unified Modeling Language

The Unified Modeling Language (UML) defines a large number of different d iagrams. They are divided into following

three categories: Static structure diagrams, Behavior d iagrams and Implementation diagrams. In order to calculate the

function point from the above diagrams, we use the sequence diagrams and class diagrams. Because these diagrams

includes the informat ion about all functions and data manipulated in the system. All these UML diagram are explained in

my proposed paper” Full Functional size measurement Model applied to UML-based Real Time Application” [1].

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

||Issn 2250-3005(online)|| ||December||2012|| Page 257

3. PROPOSED RULES FOR OOFFPA FUNCTION POINT

Aim is to calculate the Unadjusted Function Point. Here I am proposing the following five steps to apply

OOFFPA to the requirements/design specifications (class diagrams and sequence diagrams) based on the UML.

Step1 Determine the Type of Function Point Count

Step2 Identify the Counting Boundary

Step3 A. Count Data Function Types

Step4 Count Transactional Function Types

Step5 Count new Control Data Function Type

Step6 Count new Control Transactional function Type

Step7 Calcu late Unadjusted Function Point Count

Step8 Determine value adjustment factor

Step9 Calcu late Adjusted Function point

B. Count Data Function Types

a. Object Oriented ILF Complexity and Contribution (OOILF):

The OOILF steps are as follows:

1. Rate the OOILF complexity.

2. Translate the complexity to unadjusted function points.

3. Calculate the OOILF contribution to the total unadjusted function point count.

1. Rate Ooilf Complexity:

Rate the complexity of the OOILF using the following complexity matrix.

RER/DET 1 to 19 DET 20 to 50 DET 51 or more DET

1 RET Low Low Average

2 to 5 RETs Low Average High

6or more RETs Average High High

Table1. OOILF

2. Translate OOILFs :

The following table translates the external inputs' functional complexity to unadjusted function points. Low=7,

Average=10, High =15.

3. Calculate Ooilf Contribution:

The following table shows the total contribution for the OOILF function typ e.

Type ILF SR ILF OOFP SR OOFP Total OOFP

SC 20 7 (L) 20*7 140+60 200

AS 14 7 (L) 14*7 98+60 158

AG 14 7 (L) 14*7 98+60 158

GN 7 10 (A) 7*10 70+60 130

MX 7 10 (A) 7*10 70+60 130

Table2. OOILF

b. Object Oriented EIF Complexity and Contribution (OOEIF):

The OOEIF steps are as follows:

1. Rate the OOEIF complexity.

2. Translate the complexity to unadjusted function points.

3. Calculate the OOEIF contribution to the total unadjusted function point count.

1. Rate Ooeif Complexity:

Rate the complexity of the OOEIF using the following complexity matrix.

Table3. OOEIF

2. Translate Ooilfs :

The following table translates the external inputs' functional complexity to unadjusted function points. Low=5,

Average=7, High =10.

RET/DET 1 to 19 DET 20 to 50 DET 51 or more DET

1 RET Low Low Average

2 to 5 RETs Low Average High

6or more RETs Average High High

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

||Issn 2250-3005(online)|| ||December||2012|| Page 258

3. Calculate Ooeif Contribution:

The following table shows the total contribution for the OOEIF function type. As there are 12 concrete methods in the

model, service requests contribute 12 * 5 = 60 OOFPs (SR OOFP). The Value 7 is rated as Low and it is weighted 4.

Type EIF SR ILF OOFP SR OOFP Total OOFP

SC 8 5 (L) 8*5 40+60 100

AS 7 5 (L) 7*5 35+60 95

AG 7 5 (L) 7*5 35+60 95

GN 5 10 (A) 5*10 50+60 110

MX 4 10 (H) 4*10 40+60 100

Table4. OOEIFs

C. Count Transactional Function Types

a. Object Oriented External Inputs Complexity and Contribution (OOEI):

The OOEI steps are as follows:

1. Rate the OOEI complexity.

2. Translate the complexity to unadjusted function points.

3. Calculate the OOEI contribution to the total unadjusted function point count.

1. Rate Ooei Complexity:

Rate the complexity of the OOEI using the following complexity matrix.

RER/DET 1 to 5 DET 6 to 19 DET 20 or more DET

0 to1 FTR Low Low Average

2 to 3 FTRs Low Average High

4 or more FTRs Average High High

Table5. OOEIs Complexity Rate

2. Translate OOEIs :

The following table translates the external inputs' functional complexity to unadjusted function points. Low=3,

Average=4, High =6. The fo llowing table shows the functional complexity for each OOEI.

OOEI FTRs DETs Functional Complexity

Browse Image 1 4 L

Apply Skin co lour 1 3 L

Largest connected Region 2 10 A

RGB Image 2 8 A

Binary Image 1 4 L

Image Lip 0 2 L

Image Eye 0 2 L

Image Eyebrow 0 2 L

Bezier Curve 1 3 H

Table6.OOEIs

3. Calculate OOEI Contribution:

The following table shows the total contribution for the OOEI function type.

Total no. of OEI Function

Type

Functional Complexity Total Complexity Total function type

8 5(L) 5*3 15

 2(A) 2*4 8

 1(H) 1*6 6

 Total + 29

Table7. Total OOEIs

b. Object Oriented External Output Complexity and Contribution (OOEO):

The OOEO steps are as follows:

1. Rate the OOEO complexity.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

||Issn 2250-3005(online)|| ||December||2012|| Page 259

2. Translate the complexity to unadjusted function points.

3. Calculate the OOEO contribution to the total unadjusted function Point count.

1. Rate Ooeo Complexity:

Rate the complexity of the OOEO using the following complexity matrix.

RER/DET 1 to 5 DET 6 to 19 DET 20 or more DET

0 to1 FTR Low Low Average

2 to 3 FTRs Low Average High

4 or more FTRs Average High High

Table8. OOEOs Complexity Rate

2. Translate Ooeos :

The following table translates the external inputs' functional complexity to unadjusted function points. Low=4,

Average=5, High =7.

The following table shows the functional complexity for each OOEO.

OOEO FTRs DETs Functional Complexity

Valid Face 0 6 H

Connected 2 4 A

Happy emotion 1 3 L

Fear Emot ion 1 5 L

Surprise Emotion 1 7 L

Sadness Emotion 1 4 L

Anger Emotion 1 6 L

Disgust Emotion 1 2 L

Table9.OOEOs

3. Calculate Ooeo Contribution:

The following table shows the total contribution for the OOEO function type.

Total no. of OOEO

Function Type

Functional Complexity Total Complexity Total function type

6 4(L) 5*4 16

 2(A) 2*5 10

 0(H) 1*7 0

 Total + 26

Table10. Total OOEIs

c. Object Oriented External Inquiries Complexity

And Contribution (OOEQ)

The OOEQ steps are as follows:

1. Rate the OOEQ complexity.

2. Translate the complexity to unadjusted function points.

3. Calculate the OOEQ contribution to the total unadjusted function point count.

1. Rate Ooeq Complexity:

Rate the complexity of the OOEQ using the following complexity matrix.

RER/DET 0 to 5 DET 6 to 19 DET 20 or more DET

0 to1 FTR Low Low Average

2 to 3 FTRs Low Average High

4 or more FTRs Average High High

Table11. OOEQs Complexity Rate

2. Translate Ooeqs :

The following table translates the external inputs' functional complexity to unadjusted function points. Low=3,

Average=4, High =6.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

||Issn 2250-3005(online)|| ||December||2012|| Page 260

OOEQ FTRs DETs Functional

Complexity

Fear samples 1 2 L

Surprise

samples

1 1 L

Sadness

samples

1 4 L

Anger

samples

1 6 L

Disgust

samples

1 4 L

Happy

samples

1 3 L

Table12.OOEQs

3. Calculate Ooeqs Contribution:

The following table shows the total contribution for the EI function type.

Total no. of OEI Function

Type

Functional

Complexity

Total Complexity Total function type

5 5(L) 5*3 15

 0(A) 0*4 8

 0(H) 0*6 6

 Total + 29

Table13. Total OOEQs Complexity Rate

The following table shows the total contribution for the OOEI, OOEO and OOEQ function type

Function

Type

Total

Functi

on

Lo

w

Averag

e

High Total

functio

n type

OOEI 9 6*3 2*4 1*6 32

OOEO 8 6*4 1*5 1*7 26

OOEQ 6 6*3 0*4 0*6 18

+ 76

Table14.Total Function type

D. Count new Control Data Function And Transactional Function Type

a. Object Oriented Full Function Points (OOFFP) new Control and Transactional Function Count

OOFFP new

function types

Description No. of sub-processes

OOUCG Data updated by the application 8

OORCG Data not updated by the application 10

OOECE Incoming external message 1

OOECX Outgoing external message 1

OOICR Referred attribute in an elementary action 7

OOICW Update attribute in an elementary action 15

 Total 42

Table15.Total new control and Transactional Function count.

Low=2, Average=3, High =5(for NCDFC).

Low=3, Average=4, High =6(for NTFC)

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

||Issn 2250-3005(online)|| ||December||2012|| Page 261

Function

Type

Total

functi

on

Lo

w

Averag

e

High Total

functio

n type

OOUCG 8 6*2 2*3 0*5 18

OORCG 10 6*2 3*3 1*5 26

OOECE 1 1*3 0*4 0*6 3

OOECX 1 0*3 1*4 0*6 4

OOICR 7 3*3 3*4 1*6 27

OOICW 14 7*3 7*4 0*6 49

 127

Table16.Total New function Type

E. Calculate UnAdjusted Function Point Count (UFP)

The following table shows the contribution of the application functionality to the unadjusted function point count.

Function Type Total functional

Complexity

OODFC 1341

OOTFC 76

 NCDFC & NTFC 42

Total 1459

Table17. Total UFP of OOFFP

F. Procedures to Determine the VAF

The following steps outline the procedures to determine the value adjustment factor (chapter3).

1. Evaluate each of the 14 general system characteristics on a scale from zero to five to determine the degree of in fluence

(DI).

2. Add the degrees of influence for all 14 general system characteristics to produce the total degree of influence (TDI).

3. Insert the TDI into the following equation to produce the value adjustment factor.

VAF = (TDI * 0.01) + 0.65

For example, the following value adjustment factor is calculated if there are three degrees of influence for each of the 14

GSC descriptions

(3*14).

VAF = (42 * 0.01) + 0.65

VAF = 1.07

G. Calculate adjusted Function point count(AFP)

Using the complexity and contribution counts for this example, the development pro ject count is shown below. The value

adjustment factor (VAF) for this example is 1.07.

AFP = UFP * VAF

AFP = 1459 * 1.07

 AFP = 1561.13 or 1561

H. Assumptions & Results

Past date indicate that one FP translate into 60 times of code (if an OOP language is to be used) LOCs = 60 * 1561 =

93660 (approximately) Past project have found an average of 3 errors per function point during analysis and design

reviews and 4 errors per function point during unit and integration testing. Thus, possible number of errors in analysis and

design reviews should be 3*1561 i.e. 4683. At the time of testing

Possible number of errors should be 4*1561 i.e. 6244. Thus total possible number of erro rs should be 10927.

4. Verification of Results
After implementation it was found that lines of code are 94181, which is more than calcu lated LOCs (on the basis of FPs

in analysis phase) by a value of 1561.

Errors found at the time of analysis and design reviews are 4683 and errors found at the time of testing are 6244. Thus

total errors found are 10927 which is more than calculated by a value of 1561.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

||Issn 2250-3005(online)|| ||December||2012|| Page 262

5.1 COMPARATIVE STUDY OF HED ON DIFFERENT METRICS

Metrics Count number Error-proness

LOC 94181 10927

FP 1850 7259

OOFFP 1561 5463.5

Table17. Metrics comparison

5. CONCLUSION
This above table shows that the OOFFP metrics is best for size measurement of real t ime system. By using this

size we can calcu late the Productivity and quality of real t ime system. So OOFFPA helps to increase the performance MIS

as well as real time software.

References

[1] Full Functional size measurement Model applied to UML-based Real Time Application is accepted in International

Conference on Recent Trends in Control Communication and Computer Technology(RTCCT-2012), Paper ID:

RTCCCT-29SEP12-030

URL http://www.interscience.ac.in/Chennai/RTCCCT/index.html

[2] Abran, A., Desharnais, J.-M., Maya, M., St-Pierre, D., & Bourque, P. (1998). Design of Functional Size

Measurement for Real-Time Software. Montréal, Université du Québec à Montréal [www document]..

URL http://www.lrg l.uqam.ca/publications/pdf/407.pdf

[3] Bohem, R. (1997). Function Point FAQ. Metuchen,USA, Software Composition Technologies, Inc URL

http://ourworld.compuserve.com/homepage/softcom/

[4] Desharnais, J.-M. & Morris, P. (1996). Validation Process in Software Engineering: an Example with Function

Points. In Forum on Software Engineering Standards (SES„96), Montreal [www document]..

URL http://www.lrg l.uqam.ca/publications/pdf/104.pdf

[5] Introduction to Function Point Analysis (1998). GIFPA, Issue 2, summer [www document]. URL

http://www.gifpa.co.uk/news/News2Web.pdf

[6] International Standards Organisation (ISO) (1991). Informat ion Technology ± Software Product Evaluation ± Quality

Characteristics and Guidelines for their Use (ISO/IEC IS 9126). Geneve: ISO/IEC.

[7] Software Metrics - why bother?.(1998). GIFPA, Issue 1, spring

URL http://www.gifpa.co.uk/news/Issue1_ed2.pdf

[8] St-Pierre, D., Maya, M., Abran, A., Desharnais, J. -M. & Oligny, S. (1997a). Full Function Points: Counting Practices

Manual. Montréal, Université du Québec à Montréal [www document].

URL http://www.lrg l.uqam.ca/publications/pdf/267.pdf

[9] St-Pierre, D., Maya, M., Abran, A., Desharnais, J.-M. & Oligny, S. (1997b). Measuring the functional size of real-

time software. Montréal, Université du Québec à Montréal [www document].

URL http://www.lrg l.uqam.ca/publications/pdf/330.pdf

[10] Fenton, N. E. & Pfleeger, S. L. (1996). Software Metrics - A Rigorous & Practical Approach. London:

International Thomson Computer Press.

[11] Functional Size Measurement fo r Real-Time Software. Montréal, Université du Québec à J. Clerk Maxwell, A

Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[12] An Empirical Validation of Software Quality Metric Su ites on Open Source Software for Fault -Proneness Prediction

in Object Oriented System I. S. Jacobs and C. P. Bean, “Fine particles, thin films and

http://www.lrgl.uqam.ca/publications/pdf/407.pdf
http://ourworld.compuserve.com/homepage/softcom/
http://www.lrgl.uqam.ca/publications/pdf/104.pdf
http://www.gifpa.co.uk/news/News2Web.pdf
http://www.gifpa.co.uk/news/Issue1_ed2.pdf
http://www.lrgl.uqam.ca/publications/pdf/267.pdf
http://www.lrgl.uqam.ca/publications/pdf/330.pdf

