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Abstract 
Lorenz’s discovery of chaotic behaviors in nonlinear differential equations is one of the most exciting 

discoveries in the field of nonlinear dynamical systems. The chief aim of this paper is  to develop a eigenvaluel theory 

so that a continous system undergoes a Hopf bifurcat ion, and to investigate dynamic behaviors on the Lorenz model:  
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where qpk ,,  are adjustable parameters. 
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1. Introduction 

The mathematics of d ifferential equantions is not elementary. It is one of the great achievements made possible 

by calculus. Lorenz’s discovery of strange attractor attractor was made in the numerical study of a set of differential 

equations which he had refined from mathematical models used for testing weather prediction. Although the topic of 

differential equations is some 300 years old, nobody would have though it possible that differential equations could 

behave as chaotically as Lorenz found in his experiments  [2 Front].  In case of one-dimensional maps, the lack of 

hyperbolicity is usually a signal for the occurrence of bifurcations. For h igher dimensional systems, these types of 

bifurcations also occur, but there are other possible bifurcations of periodic points as well. The most typical of these is 

the Hopf bifurcat ion. In the theory of bifurcations, a Hopf bifu rcation refers to the local b irth and death of a periodic 

solution as a pair of complex conjugate eigenvalues of the linearization around the fixed point which crosses the 

imaginary axis of the complex p lane as the parameter varies. Under reasonably generic assumptions about the 

dynamical system, we can expect to see a small amplitude limit cycle branching from the fixed point [3-8]. 

We first highlight some related concepts for completeness of our exploration.  

   

1.1 Limit cycles  

A cyclic or periodic solution of a nonlinear dynamical system corresponds to a closed loop trajectories in the 

state space. A trajectory point on one of these loops continues to cycle around that loop for all time. These loops are 

called cycles , and if trajectories in the neighborhood to the cycle are attracted toward it, we call the cycle a limit cycle 

[2, 5].  

 

1.2 The Hopf bifurcation theorem:  

In this discussion we will restrict our discussion on second-order systems of nonlinear ordinary differential 

equations, although almost all the results and discussions given below can be extended to general nth -order systems. 

We consider the system
2  ),;(  x x

x
R

dt

d
                                                                                               (1.1) 

where R denotes a real parameter on an interval I. We assume that the system is well defined, with certain smoothness 

on the nonlinear vector field  , and has a unique solution for each given initial value x x )( 0t  for each fixed  

IR .We also assume that the system has an equilibrium point )(
*

Rx  and that the associated Jacobian 
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



J  has a single pair of complex conjugate eigenvalues  .ImRe(R)(R),    Now suppose that 

this pair of eigenvalues has the largest real part of all the eigenvalues and is such that in a small neighborhood of a 

bifurcation value ,cR  (i) 0Re   if ,cRR    (ii) 0Im ,0Re    if cRR  and (iii) 0Re   if 

.cRR  Then, in a small neighborhood of  ,, cc RRR   the steady state is unstable by growing oscillations and, at 

least, a small amplitude limit cycle periodic solution exists about the equilibrium point. The appearance of periodic 

solutions (all depend on the particular nonlinear function ) out of an equilib rium state is called Hopf bifurcation. 

When the parameter R is continuously varied near the criticality ,cR  periodic solutions may emerge for cRR 
 
(this 

case is referred to as supercritical bifurcation) or for cRR    (which is referred to as subcritical bifurcation) [5-7].      

Armed with these concepts, we now concentrate to our main study and investigation. 

 

1.3 The principal investigation 

 We consider a two-dimensional system 
2),(,  ),; (  yx RR x xx   where   depends 

smoothly on the real variable parameter R   such that for each R  near the origin )0 ,0(  there is an equilib rium point 

)(* Rx  with the Jacobian matrix )),(( * bbD xx   having a complex conjugate pair of eigenvalues which cross the 

imaginary axis as the parameter b  passes through ).0 ,0(  Using complex coordinate ,iyxz   the system can be 

expressed in the variable z as  2
1

2
11

2
1 ...  zzMzCzzBzAηzz                                                  (1.2)

                                 

where 1111 ,,, MCBA  are complex constants. By making a suitable change of variab les the system can be transformed  

to a normal form:  

                               
 ),()( 42

wowLww                                                                                                  (1.3) 

where Lw,
 
are both complex numbers. We write .,  ;  EDiEDL  The behavior of the system (1.3) is most 

conveniently studied using polar coordinate .irew   From this we obtain, .  ii irerew   Hence 

)Re(1 wwrr    and )Im(2 wwr    and then  (1.3) implies  

                           
)(  ),( 243 roroDrr                                                                                              (1.4) 

Supercrit ical and subcritical Hopf bifurcation occur according as 0D  and 0D  respectively. If ,0D
 

considering high order terms we can draw the same conclusion. Now to determine k, we apply the transformat ion 

.z 22 zzzzw  
 
We have  

)( 2)( )(        

)(2z    

  2  2

2
11

2
1

1
2

1
2

11
2

1

zCzzzzBzzzAzz

zzBzzzzMzCzzBzA

zzzzzzzzzw











 

 

keeping only terms upto second order, where cubic terms are neglected other than .2 zz  We eliminate the quadratic 

terms by putting 

.3/  ,/-i  ,// 1111  iCBiAA   

 Then we obtain  

  ,3/2// 22
1

2
1111 wwCiBiBiAMww    

We conclude that .  3/2//
2

1
2

1111  CiBiBiAML   

 and  
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 

).Im()Re(    

/Re 

11
1

1

111

BAM

BiAMD









 

1.4. Extension to three order differential equations  

Let us assume that we have a three-dimensional system:  

3),,(,),,(  ), (  zyxzyx T
x xx   

which has an equilibrium point for which there is one negative eigenvalue and an imaginary pair. The behavior of the 

system near the equilibrium point can be analyzed by a reduction of the system to a two-dimensional one, as follows. 

First we choose coordinates so that the equilib rium point is the origin and so that the linearised system is  

zzρvv                 ,
 
 

where v  is a real variable and z  is complex, and .  ,0  i   

We can now express the system as  

.....zdzztzszrzzqvpvzzz

.....zzδzγzzvαvzρvv





222

22

 

 








 

If the equation for v were of the form ),( zvvfvv    then the plane v = 0 would be invariant, in the sense that 

solutions starting on this plane stay on it, and we could restrict attention to the behavior on this plane. What we do 

below is to find a change of variables which converts the system into one which is sufficiently close to this form. We 

try the change of variables 

real. is     where,22 bzazbzazwv   

We obtain  

,22  222222 zazazzzzzwααwzzazbzazww    

neglecting terms of order 3 and higher. Then if we choose  

)2(   ia   

and                                                                       b  

We have                                                       ... zwwzww   

which is of the desired form (as far as of second-order, which turns out to be sufficient). Putting 0w , in the equation 

for ,z  and retaining only terms of order second and those involving ,2 zz  we obtain 

zzd
i

qp
ztzszrzzz 222

2 






















  

and using the two-dimensional theory we obtain  

.
2

 ofpart  Real 





















 irs
d

i

qp
D  

Supercrit ical and subcritical Hopf bifurcation occur according as  0D   and 0D  respectively. If ,0D
 

considering high order terms we can draw the same conclusions. 

 

1.5 Our main study  

 For our main study we consider the Lorenz  model:   

.  ,  , qzxy
dt

dz
ypxxz

dt

dy
kykx

dt

dx
                                                               (1.5) 

For our purpose, the parameters are fixed as in the Lorenz model as given below [8]: 

3

8
   ,28   ,10  qpk  
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With these parameter values the equilibrium points 3,2,1),,,( *** izyx iii  of the system (1.5) are g iven by setting the 

left-hand sides zero and solving the resulting system of equations, to get  

. )000040000000000.27  ,385714852813742.8  ,385714852813742.8( 

),000040000000000.27  ,385714852813742.8  ,385714852813742.8(  

),0  ,0  ,0(     

*
3

*
3

*
3

*
2

*
2

*
2

*
1

*
1

*
1







zyxor

zyxor

zyx

 

Out of these  equilibrium 

points )000040000000000.27  ,385714852813742.8  ,385714852813742.8(  *
3

*
3

*
3  zyx  

 is suitable for our purpose. 

et us take a linear transformation which moves the equilibrium point to the origin. We take 
*
3

*
3 y  v, yxxu 

 

and 
*
3 z zw  . Then the system (1.5) becomes  

wvuyvkxuk
dt

du
10100 )()( *

3
*
3                                                                  (1.6) 

wwuv

yvxurzwxu
dt

dv

48528.8)1(1068434.5      

)()())((

14

*
3

*
3

*
3

*
3







                                                              (1.7)

  

wwuv

zwqyvxu
dt

dw

48528.8)1(1068434.5       

)()*)((

14

*
3

*
3







                                                             (1.8) 

The matrix of linearized system is then of the form    

























6666656666666666.2385714852813742.8385714852813742.8

385714852813742.811

01010

G  

The eigenvalues 21,,   of M  are  

i

i

278511945052209.1064685560939556239.0

,278511945052209.1064685560939556239.0

,960398545779145.13

2

1













 

Let us take                                       



















2

1

00

00

00







H  

 as the diagonal matrix. Then we 

obtain

























ii

ii

ii

HG

0020143.10110728.0163278.0

600717.000553639.0188787.000173992.0667072.0

600717.000553639.0188787.000173992.0718386.0
1

 

  In order to make the linearized system into a diagonal form, we make the coordinate change by ,1HWG
 where U is 

the column matrix, 
ThgfW ],,[ . 
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Now 

























higifi

higifi

higifi

HWG

)00()20143.10110728.0()0163278.0(

)600717.000553639.0()188787.000173992.0()0667072.0(

)600717.000553639.0()188787.000173992.0()0718386.0(
1 Puttin

g  

                       
higifiw

higifiv

higifiu

).00()20143.10110728.0()0163278.0(

,)600717.000553639.0()188787.000173992.0()0667072.0(

,)600717.000553639.0()188787.000173992.0()0718386.0(







 

in equations (1.6) and (1.7), we get  

)).00()20143.10110728.0()0163278.0((10       

))600717.000553639.0()188787.000173992.0()0667072.0((10

higifi

higifi
dt

du




 

))20143.10110728.0()0          

163278.0((48528.8)))20143.10110728.0()0163278.0((1)()600717.0          

00553639.0()188787.000173992.0()0718386.0(())600717.0          

00553639.0()188787.000173992.0()0667072.0((1068434.5 14

gifi

gifihi

gifihi

gifi
dt

dv







 

Finally, 

under the stated transformation (as described in General theory) the system becomes

  ...)00717.60553639.0( 000018386.7 22  highgfhfgf
dt

du
                    (1.9) 

(1.10)                           ...000.721783 )0041808.0226796.0(        

)0980837.0000903969.0()893918.000823861.0()1945.10099556.0(

222 



hghghgi

fhifgigi
dt

dv

 

 From above, we obtain 

 = Coefficient of f in (1.9) = ,18386.7  

p = Coefficient of fg  in (1.10) = ,893918.000823861.0 i  

 = Coefficient of gh  in (1.9) = 0  

q = Coefficient of fh  in (1.10) = ,0980837.0000903969.0 i  

 = Coefficient of 
2g in (1.9) = 0  

d = Coefficient of hg 2
in (1.10) = ,0  

r = Coefficient of 
2g in (1.10) = ,0041808.0226796.0 i  

s = Coefficient of gh  in (1.10) = 0.721783,  

 =Imaginary part of eigenvalues = ....854578.13  
 

 Using the above values we can calculate the value of  k   as  

000217807.0   

.
2

 ofpart  Real

























 irs
d

i

qp
D

 

Hence, we have a supercritical Hopf b ifurcat ion.  Of course, this bifurcat ion is stuied in a rigorous manner. Similarly, 

we can study the Hopf bifurcat ion of a given system for d ifferent values of the parameters. 

[For all numerical results, used in this paper, the Computer package “MATHEMATICA” is used] 
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2. Conclusion: 

 We think, our method is quite suitabale for obtaining hopf bifurcation fo r any order nonlinear differential 

equation, if hopf bifurcation exists. 

 

3.  Acknowledgement 
I am grateful to Dr. Tarini Kumar Dutta, Sen ior Professor of the Department of Mathematics, Gauhati 

University, Assam: India, for a valuable suggestion for the improvement of this research paper.  

 

4.  References: 
[1]  Das, N and Dutta,  T. K., Determination of supercritical and subcriti hopf bifurcation on a two-dimensional 

chaotic model, International Journal of Advance Scintific Research and Technology, Issue2, Vol. 1, February, 

2012. 

[2]  Hilborn, Robert C., Chaos and Nonlinear Dynamics, Oxford University Press, 1994 

[3]  Hopf, E., Abzweigung einer periodischen Losung von einer stationaren Losung eines Differential systems , Ber. 

Verh. Sachs. Akad. Wiss. Leipsig Math.-Nat. 94(1942), 3-22,    Translation to English with commentary by L. 

Howard and N. Kopell,in[81;163-205] 

[4]  Marsden, J. E. and McCracken, M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 

1976 

[5]  Moiola, J. L. and Chen, G., Hopf Bi furcation Analysis: a frequency domain approach , World Scientific, 1996 

[6] Murray, J. D., Mathematical Biology I: An Introduction , Third Edition (2002), Springer 

[7]  Roose, D. and Hlavacek, V., A Direct Method for the computation of Hopf bifurcation  points, SIAM  J. APPL. 

MATH., Vol. 45, No. 6, December 1985 

[8]  Peitgen H.O., Jurgens H. and Saupe D., “Chaos and Fractal”, New Frontiers of Science,   

      Springer Verlag, 1992 

 

 

 


