

Location Of The Zeros Of Polynomials

M.H. Gulzar

Department of Mathematics University of Kashmir, Srinagar 190006.

Abstract: In this paper we prove some results on the location of zeros of a certain class of polynomials which among other things generalize some known results in the theory of the distribution of zeros of polynomials.

Mathematics Subject Classification: 30C10, 30C15

Keywords and Phrases: Polynomial, Zeros, Bounds

1. Introduction And Statement Of Results

A celebrated result on the bounds for the zeros of a polynomial with real coefficients is the following theorem ,known as Enestrom –Kakeya Thyeorem[1,p.106]

Theorem A: If $0 < a_0 \le a_1 \le \dots \le a_n$, then all the zeros of the polynomial

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_{n-1} z^{n-1} + a_n z^n$$

lie in $|z| \leq 1$.

Regarding the bounds for the zeros of a polynomial with leading coefficient unity, Montel and Marty [1,p.107] proved the following theorem:

Theorem B: All the zeros of the polynomial

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_{n-1} z^{n-1} + z^n$$

lie in $|z| \le \max(L, L^{n})$ where L is the length of the polygonal line joining in succession the points

 $0, a_0, a_1, \dots, a_{n-1,1}; i.e.$

$$L = |a_0| + |a_1 - a_0| + \dots + |a_{n-1} - a_{n-2}| + |1 - a_{n-1}|.$$

Q.G. Mohammad [2] proved the following generalization of Theorem B: **Theorem C:** All the zeros of the polynomial Of Theorem A lie in

$$\left|z\right| \le R = \max(L_p, L_p^{\frac{1}{n}})$$

where

$$L_{p} = n^{\frac{1}{q}} \left(\sum_{j=0}^{n-1} \left| a_{j} \right|^{p} \right)^{\frac{1}{p}}, p^{-1} + q^{-1} = 1.$$

The bound in Theorem C is sharp and the limit is attained by

$$P(z) = z^{n} - \frac{1}{n}(z^{n-1} + z^{n-2} + \dots + z + 1).$$

Letting $q \rightarrow \infty$ in Theorem C, we get the following result:

Theorem D: All the zeros of P(z) of Theorem A lie in $|z| \le \max(L_1, L_1^{\frac{1}{n}})$ where

lssn 2250-3005(online)

$$L_1 = \sum_{i=0}^{n-1} |a_i|$$
.

Applying Theorem D to the polynomial (1-z)P(z), we get Theorem B. Q.G. Mohammad, in the same paper, applied Theorem D to prove the following result: **Theorem E:** If $0 < a_{i-1} \le ka_i, k > 0$, then all the zeros of

 $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_{n-1} z^{n-1} + a_n z^n$

lie in $|z| \leq \max(M, M^{\frac{1}{n}})$ where

$$M = \frac{(a_0 + a_1 + \dots + a_{n-1})}{a_n} (k - 1) + k.$$

The aim of this paper is to give generalizations of Theorems C and E. In fact, we are going to prove the following results: **Theorem 1:** All the zeros of the polynomial

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_\mu z^\mu + z^n, 0 \le \mu \le n - 1$$

lie in

$$\left|z\right| \leq R = \max(L_p, L_p^{\frac{1}{n}})$$

where

$$L_{p} = n^{\frac{1}{q}} \left(\sum_{j=0}^{\mu} \left| a_{j} \right|^{p} \right)^{\frac{1}{p}}, p^{-1} + q^{-1} = 1.$$

Remark 1: Taking μ =n-1, Theorem 1 reduces to Theorem C.

Theorem 2: If $0 < a_{i-1} \le ka_i$, k > 0, then all the zeros of

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_\mu z^\mu + a_n z^n, 0 \le \mu \le n - 1,$$

lie in $|z| \le \max(M, M^{\overline{n}})$ where

$$M = \frac{(a_0 + a_1 + \dots + a_{\mu})}{a_n} (k - 1) + k.$$

Remark 2: Taking $\mu = n-1$, Theorem 2 reduces to Theorem E and taking $\mu = n-1$, k=1, Theorem 2 reduces to Theorem A due to Enestrom and Kakeya.

2. Proofs Of Theorems

Proof of Theorem 1. Applying Holder's inequality, we have

$$\begin{split} |P(z)| &= \left| a_0 + a_1 z + a_2 z^2 + \dots + a_\mu z^\mu + z^n \right| \\ &\geq \left| z \right|^n \Biggl[1 - \sum_{j=1}^{\mu+1} \left| a_{j-1} \right| \frac{1}{\left| z \right|^{n-j+1}} \Biggr] \\ &\geq \left| z \right|^n \Biggl[1 - n^{\frac{1}{q}} (\sum_{j=1}^{\mu+1} \left| a_{j-1} \right|^p \frac{1}{\left| z \right|^{(n-j+1)p}})^{\frac{1}{p}} \Biggr]. \end{split}$$

If $L_p \geq 1$, max($L_p, L_p^{\frac{1}{n}}$) = L_p . Let $|z| \geq 1$. Then $\frac{1}{\left| z \right|^{(n-j+1)p}} \leq \frac{1}{\left| z \right|^p}$, $j = 1, 2, \dots, \mu + 1$.

lssn 2250-3005(online)

November | 2012

Hence it follows that for $|z| > L_p$,

$$|P(z)| \ge |z|^{n} \left[1 - \frac{n^{\frac{1}{q}}}{|z|} (\sum_{j=0}^{\mu} |a_{j}|^{p})^{\frac{1}{p}} \right] = |z|^{n} \left[1 - \frac{L_{p}}{|z|} \right] > 0.$$

Again if $L_p \le 1$, max $(L_p, L_p^{\frac{1}{n}}) = L_p^{\frac{1}{n}}$. Let $|z| \le 1$. Then

$$\frac{1}{|z|^{(n-j+1)p}} \le \frac{1}{|z|^{np}}, j = 1, 2, \dots, \mu + 1.$$

Hence it follows that for $|z| > L_p^{\frac{1}{n}}$,

$$|P(z)| \ge |z|^{n} \left| 1 - \frac{n^{\frac{1}{q}}}{|z|^{n}} (\sum_{j=0}^{\mu} |a_{j}|^{p})^{\frac{1}{p}} \right| = |z|^{n} \left[1 - \frac{L_{p}}{|z|^{n}} \right] > 0.$$

Thus P(z) does not vanish for $|z| > \max(L_p, L_p^{\frac{1}{n}})$ and hence the theorem follows. **Proof of Theorem 2.** Consider the polynomial

$$F(z) = (k - z)P(z) = (k - z)(a_0 + a_1z + \dots + a_{\mu}z^{\mu} + a_nz^n)$$

= $ka_0 + (ka_1 - a_0)z + (ka_2 - a_1)z^2 + \dots + (ka_{\mu} - a_{\mu-1})z^{\mu} - a_{\mu}z^{\mu+1}$
+ $ka_nz^n - a_nz^{n+1}$

Applying Theorem C to the polynomial $\frac{F(z)}{a_n}$, we find that

$$L_1 = \frac{k(a_0 + a_1 + \dots + a_{\mu}) - (a_0 + a_1 + \dots + a_{\mu-1} + a_{\mu}) + ka_n}{a_n}$$

$$=\frac{(k-1)(a_0+a_1+\ldots+a_{\mu})}{a_{\mu}}+k$$

=M

and the theorem follows.

References

- [1] M. Marden , The Geometry of Zeros, , Amer.Math.Soc.Math.Surveys , No.3 , New York 1949.
- [2] Q.G. Mohammad , Location of the Zeros of Polynomials , Amer. Math. Monthly , vol.74,No.3, March 1967.