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Abstract: In this paper we prove some results on the location of zeros of a certain class of polynomials which among other 

things generalize some known results in the theory of the distribution of zeros of polynomials. 
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1.   Introduction And Statement Of Results 
A celebrated result on the bounds for the zeros of a polynomial with real coefficients is the following theorem ,known 

as Enestrom –Kakeya Thyeorem[1,p.106] 

Theorem A: If  naaa  ......0 10 , then all the zeros of the polynomial 
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Regarding the bounds for the zeros of a polynomial with leading coefficient unity, Montel and Marty [1,p.107] proved the 

following theorem: 
 

Theorem B: All the zeros of the polynomial 
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Q .G. Mohammad [2] proved the following generalization of Theorem B: 

Theorem C: All the zeros of the polynomial 0f Theorem A lie in    
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The bound in Theorem C is sharp and the limit is attained by  
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  Letting q ∞ in Theorem C, we get the following result: 

Theorem D: All the zeros of P(z) 0f Theorem A lie in  ),max(
1
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Applying  Theorem D to the polynomial (1-z)P(z) , we get Theorem B. 

Q .G. Mohammad , in the same paper , applied Theorem D to prove the following result: 

Theorem E: If  0,0 1   kkaa jj , then all the zeros of  
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The aim of this paper is to give generalizations of Theorems C and E. In fact, we are going to prove the following results: 

Theorem 1: All the zeros of the polynomial 
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Remark 1: Taking  =n-1, Theorem 1 reduces to Theorem C. 

Theorem 2: If  0,0 1   kkaa jj , then all the zeros of  
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Remark 2: Taking  =n-1 , Theorem 2 reduces to Theorem E and taking   =n-1 ,  k=1, Theorem 2 reduces to Theorem A 

due to Enestrom and Kakeya.. 

 

2. Proofs Of Theorems 
 Proof  of Theorem 1. Applying Holder’s inequality, we have 
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Hence it follows that for 
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Thus P(z) does not vanish for ),max(
1

n
pp LLz   and hence the theorem follows. 

Proof  of Theorem 2. Consider the polynomial 
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Applying Theorem C to the polynomial 

na

zF )(
, we  find that 

           

n

n

a

kaaaaaaaak
L




 )......()......( 11010

1


 

                 

                k
a

aaak

n





)......)(1( 10 

   

                =M 

and the theorem follows.  
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