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Abstract: 
We address cooperative caching in wireless networks, where the nodes may be mobile and exchange information in a peer-to-

peer fashion. We consider both cases of nodes with largeand small-sized caches. For large-sized caches, we devise a strategy 

where nodes, independent of each other, decide whether to cache some content and for how long. In the case of small-sized 

caches, we aim to design a content replacement strategy that allows nodes to successfully store newly received information 

while maintaining the good performance of the content distribution system. Under both conditions, each node takes decisions 

according to its perception of what nearby users may store in their caches and with the aim of differentiating its own cache 

content from the other nodes’. The result is the creation of content diversity within the nodes neighborhood so that a 

requesting user likely finds the desired information nearby. We simulate our caching algorithms in different ad hoc network 

scenarios and compare them with other caching schemes, showing that our solution succeeds in creating the desired content 

diversity, thus leading to a resource-efficient information access. 

 

Index Terms— Data caching, mobile ad hoc networks. 

 

I. Introduction 
PROVIDING information to users on the move is one of 

the most promising directions of the infotainment 

business, which rapidly becomes a market reality, because 

infotainment modules are deployed on cars and handheld 

devices. The ubiquity and ease of access of third- and 

fourth-generation (3G or 4G) networks will encourage 

users to constantly look for content that matches their 

interests. However, by exclusively relying on 

downloading from the infrastructure, novel applications 

such as mobile multimedia are likely to overload the 

wireless network (as recently happened to AT&T 

following the introduction of the iPhone [1]). It is thus 

conceivable that a peer-to-peer system could come in 

handy, if used in conjunction with cellular networks, to 

promote content sharing using ad hoc networking among 

mobile users [2]. For highly popular content, peer-to-peer 

distribution can, indeed, remove 

 

• Large-sized caches. 

In this case, nodes can potentially store a large portion 

(i.e., up to 50%) of the available information items. 

Reduced memory usage is a desirable (if not required) 

condition, because the same memory may be shared by 

different services and applications that run at nodes. In 

such a scenario, a caching decision consists of computing 

for how long a given content should be stored by a node 

that has previously requested it, with the goal of 

minimizing the memory usage without affecting the 

overall information retrieval performance; 

 

• Small-sized caches.  

In this case, nodes have a dedicated but limited amount of 

memory where to store a small percentage (i.e., up to 

10%) of the data that they retrieve. The caching decision 

translates into a cache replacement strategy that selects  

 

 

 

 

The information items to be dropped among the 

information items just received and the information items  

that already fill up the dedicated memory. We evaluate 

the performance of Hamlet in different mobile network 

scenarios, where nodes communicate through ad hoc 

connectivity. The results show that our solution ensures a 

high query resolution ratio while maintaining the traffic 

load very low, even for scarcely popular content, and 

consistently along different network connectivity and 

mobility scenarios. 

 

A. Cooperative Caching 

Distributed caching strategies for ad hoc networks are 

presented according to which nodes may cache highly 

popular content that passes by or record the data path and 

use it to redirect future requests. Among the schemes 

presented in [9], the approach called Hybrid Cache best 

matches the operation and system assumptions that we 

consider; we thus employ it as a benchmark for Hamlet in 

our comparative evaluation. In [10], a cooperative 

caching technique is presented and shown to provide 

better performance than Hybrid Cache. However, the 

solution that was proposed is based on the formation of an 

overlay network composed of ―mediator‖ nodes, and it is 

only fitted to static connected networks with stable links 

among nodes. These assumptions, along with the 

significant communication overhead needed to elect 

―mediator‖ nodes, make this scheme unsuitable for the 

mobile environments that we address. The work in [11] 

proposes a complete framework for information retrieval 

and caching in mobile ad hoc networks, and it is built on 

an underlying routing protocol and requires the manual 

setting of a networkwide ―cooperation zone‖ parameter. 

Note that assuming the presence of a routing protocol can 

prevent the adoption of the scheme in [11] in highly 

mobile networks, where maintaining network connectivity 
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is either impossible or more communication expensive 

than the querying/ caching process. Furthermore, the need 

of a manual calibration of the ―cooperation zone‖ makes 

the scheme hard to configure, because different 

environments are considered. Conversely, Hamlet is self 

contained and is designed to self adapt to network 

environments with different mobility and connectivity 

features. One vehicular ad hoc network scenario is 

addressed in [12], where the authors propose both an 

information retrieval technique that aims at finding the 

most popular and relevant data matching a user query and 

a popularity-aware data replacement scheme. The latter 

approach ensures that the density of different content is 

proportional to the content’s popularity at the system 

steady state, thus obeying the square-root rule proposed in 

[13] for wired networks. We point out that the square-root 

rule does not consider where copies of the data are located 

but only how many copies are created. It is thus 

insufficient in network environments whose dynamism 

makes the positioning of content of fundamental 

importance and renders steady-state conditions (as 

assumed in [13]) hard to be achieved. 
 

B. Content Diversity 

Similar to Hamlet, in [6], mobile nodes cache data items 

other than their neighbors to improve data accessibility. In 

particular, the solution in [6] aims at caching copies of the 

same content farther than a given number of hops. Such a 

scheme, however, requires the maintenance of a 

consistent state among nodes and is unsuitable for mobile 

network topologies. The concept of caching different 

content within a neighborhood is also exploited in [7], 

where nodes with similar interests and mobility patterns 

are grouped together to improve the cache hit rate, and in 

[8], where neighboring mobile nodes implement a 

cooperative cache replacement strategy. In both works, 

the caching management is based on instantaneous 

feedback from the neighboring nodes, which requires 

additional messages. The estimation of the content 

presence that we propose, instead, avoids such 

communication overhead. 
 

C. Caching With Limited Storage Capability 

In the presence of small-sized caches, a cache 

replacement technique needs to be implemented. Aside 

from the scheme in [8], centralized and distributed 

solutions to the cache placement problem, which aim at 

minimizing data access costs when network nodes have 

limited storage capacity, are presented in [14]. Although 

centralized solutions are not feasible in ad hoc 

environments, the distributed scheme in [14] makes use of 

cache tables, which, in mobile networks, need to be 

maintained similar to routing tables. Hamlet does not rely 

on cache tables, and thus, it does not incur the associate 

high communication penalty. In [15], a content 

replacement strategy that aims at minimizing energy 

consumption is proposed. To determine which content 

should be discarded, the solution exploits the knowledge 

of data access probabilities and distance from the closest 

provider—an information that is typically hard to obtain 

and is not required by Hamlet. A content replacement 

scheme that addresses storage limitations is also proposed 

in [6]. It employs a variant of the last recently used (LRU) 

technique, which favors the storage of the most popular 

items instead of the uniform content distribution targeted 

by Hamlet. In addition, it exploits the cached item IDs 

provided by the middleware to decide on whether to reply 

to passing-by queries at the network layer, as well as link-

layer traffic monitoring to trigger prefetching and 

caching. In [17], the popularity of content is taken into 

account, along with its update rate, so that items that are 

more frequently updated are more likely to be discarded. 

Similarly, in [18], cache replacement is driven by several 

factors, including access probability, update frequency, 

and retrieval delay. These solutions thus jointly address 

cache replacement and consistency, whereas in this paper, 

we specifically target the former issue. However, as will 

be pointed out, Hamlet can easily be coupled with a 

dedicated cache consistency scheme, e.g., [9] and [12]. 

2196 IEEE TRANSACTIONS ON VEHICULAR 

TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011 

 

D. Data Replication 

Although addressing a different problem, some 

approaches to data replication are relevant to the data 

caching solution that we propose. One technique of 

eliminating information replicas among neighboring 

nodes is introduced in [` 11], which, unlike Hamlet, 

requires knowledge of the information access frequency 

and periodic transmission of control messages to 

coordinate the nodes’ caching decisions. In [5], the 

authors propose a replication scheme that aims at having 

every node close to a copy of the information and analyze 

its convergence time. However, unlike Hamlet, the 

scheme implies a significant overhead and an exceedingly 

high convergence time, thus making it unsuitable for 

highly variable networks. Finally, the work in [22] adopts 

a cross-layer approach to data replication in mobile ad 

hoc networks, where network-layer information on 

the node movement path helps to trigger the replication 

before network partitioning occurs. 

 

Iii. System Outline and Assumptions 
Hamlet is a fully distributed caching strategy for wireless 

ad hoc networks whose nodes exchange information items 

in a peer-to-peer fashion. In particular, we address a 

mobile ad hoc network whose nodes may be resource-

constrained devices, pedestrian users, or vehicles on city 

roads. Each node runs an application to request and, 

possibly, cache desired information items. Nodes in the 

network retrieve information items from other users that 

temporarily cache (part of) the requested items or from 

one or more gateway nodes, which can store content or 

quickly fetch it from the Internet. We assume a content 

distribution system where the following assumptions 

hold:  
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1) A number I of information items is available to the 

users, with each item divided into a number C of chunks; 

 2) user nodes can overhear queries for content and 

relative responses within their radio proximity by 

exploiting the broadcast nature of the wireless medium; 

and  

3) user nodes can estimate their distance in hops from the 

query source and the responding node due to a hop-count 

field in the messages. 

 

Although Hamlet can work with any system that 

satisfies the aforementioned three generic assumptions, 

for concreteness, we detail the features of the specific 

content retrieval system that we will consider in the  

emainder of this paper. The reference system that we 

assume allows user applications to request an information 

item i (1 ≤ i ≤ I) that is not in their cache. Upon a request 

generation, the node broadcasts a query message for the C 

chunks of the information item. Queries for still missing 

chunks are periodically issued until either the information 

item is fully retrieved or a timeout expires. If a node 

receives a fresh query that contains a request for 

information i’s chunks and it caches a copy of one or 

more of the requested chunks, it sends them back to the 

requesting node through information messages. If the 

node does not cache (all of) the requested chunks, it can 

rebroadcast a query for the missing chunks, thus acting as 

a forwarder. The exact algorithm that is followed by a 

node upon the reception of a query message is detailed in 

the flowchart in Fig. 1 

 

(a). Fig. 1. Flowcharts of the processing of (a) query and 

(b) information messages at user nodes.We denote the 

address of the node that generated the query as asrc, the 

query identifier as id, the address of the last node that 

forwarded the query message as alast, and the set of 

queried chunks as ¯c. The functional blocks that are the 

focus of this paper are highlighted in  

 

(b). Once created, an information message is sent back to 

the query source. To avoid a proliferation of information 

copies along the path, the only node that is entitled to 

cache a new copy of the information is the node that 

issued the query. Information messages are transmitted 

back to the source of the request in a unicast fashion, 

along the same path from which the request came. To this 

end, backtracking information is carried and updated in 

query messages. Nodes along the way either act as relays 

for transit messages (if they belong to the backtracking 

node sequence) or simply overhear their transmission 

without relaying them. Fig. 1(b) depicts the flowchart of 

the operations at a node that receives a message that 

contains an information chunk. A node that receives the 

requested information has the option  to cache the 

received content and thus become a provider for that 

content to the other nodes. Determining a strategy of 

taking such caching decisions is the main objective of this 

paper, and as such, the corresponding decision blocks are 

highlighted in Fig. 1(b). 

 

We point out that Hamlet exploits the observation of 

query and information messages that are sent on the 

wireless channel as part of the operations of the content-

sharing application, e.g., the previously outlined 

approach. As a consequence, Hamlet does not introduce 

any signaling overhead. Furthermore, several 

optimizations can be introduced to improve the 

aforementioned basic scheme for the discovery of content. 

Although our focus is not on query propagation, it is 

important to take the query process into account, because 

it directly determines the network load associated with the 

content retrieval operation. While deriving the results, we 

consider the following two approaches to query 

propagation. 1) Mitigated flooding. This approach limits 

the propagation range of a request by forcing a time to 

live (TTL) for the query messages. In addition, it avoids 

the forwarding of already-solved requests by making the 

nodes wait for a query lag time before rebroadcasting a 

query; 

 

2) Eureka [13]. This approach extends mitigated flooding 

by steering queries toward areas of the network where the 

required information is estimated to be denser. Note that 

this paper focuses on cooperative caching and we do not 

tackle information consistency; thus, we do not take into 

account different versions of the content in the system 

model. We note, however, that the previous version of 

this paper [14] jointly evaluated Hamlet with a basic 

scheme for weak cache consistency based on an epidemic 

diffusion of an updated cache content and we showed that 

weak consistency can be reached, even with such a simple 

approach, with latencies on the order of minutes for large 

networks. If prompter solutions are sought, Hamlet lends 

itself to be easily integrated with one 

of the existing consistency solutions found in the 

literature (e.g., [9], [12], [15], ). In particular, these works 

propose push, pull, or hybrid approaches to achieve 

different levels of cache consistency. In the case of 

Hamlet, a push technique can be implemented through the 

addition of invalidation messages broadcast by gateway 

nodes, whereas information providers can pull an updated 

content (or verify its freshness) before sending the 

information to querying nodes. In either case, no major 

modification of the Hamlet caching scheme is required: 

the only tweaking can consist of resetting the estimation 

of the infor-mation presence upon the 

notification/detection of an updated version to ease the 

diffusion of the new information. 

 

 IV. Hamlet Framework  
The Hamlet framework allows wireless users to take 

caching decisions on content that they have retrieved 

from the network. The process that we devise allows users 

to take such decisions by leveraging a node’s local 

observation, i.e., the node’s ability to overhear queries 

and information messages on the wireless channel. In 

particular, for each information item, a node records the 

distance (in hops) of the node that issues the query, i.e., 

where a copy of the content is likely to be stored, and the 

distance of the node that provides the information. Based 
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on such observations, the node computes an index of the 

information presence in its proximity for each of the I 

items. Then, as the node retrieves content that it 

requested, it uses the presence index of such an 

information item to determine Fig. 2. whether a copy of 

the content should be cached, for how long, and possibly 

which content it should replace. By doing so, a node takes 

caching decisions that favor high content diversity in its 

surroundings, inherently easing the retrieval of data in the 

network. Note that our technique works on a per-item 

basis, and its results apply to all chunks that belong to the 

same content. In the following sections, we first detail 

how a node estimates the presence of information chunks 

in its proximity. Next, we separately describe the role of 

the information presence index in caching decisions for 

nodes with large- and small-sized caches. In the former 

case, the information presence index determines the cache 

content drop time, whereas in the latter case, it drives the 

cache content replacement. 

 

A. Information Presence Estimation 

We define the reach range of a generic node n as its 

distance from the farthest node that can receive a query 

generated by node n itself. As an example, in an ideal 

setting in which all nodes have the same radio range, the 

reach range is given by the product of the TTL and the 

node radio range. Next, we denote by f the frequency at 

which every node estimates the presence of each 

information item within its reach range, and we define as 

1/f the duration of each estimation step (also called time 

step hereafter). A node n uses the information that was 

captured within its reach range during time step j to 

compute the following two quantities: 1) a provider 

counter by using application-layer data and 2) a transit 

counter by using data that were collected through channel 

overhearing in a cross-layer fashion. These counters are 

defined as follows.  

 

• Provider counter dic(n, j). This quantity accounts for the 

presence of new copies of information i’s chunk c, 

delivered by n to querying nodes within its reach range, 

during step j. Node n updates this quantity every time it 

acts as a provider node (e.g., node P in the upper plot of 

Fig. 2). 
 

• Transit counter ric(n, j). This quantity accounts for the 

presence of new copies of information i’s chunk c, 

transferred between two nodes within n’s reach range and  

FIORE et al.: CACHING STRATEGIES BASED ON 

INFORMATION DENSITY ESTIMATION IN AD HOC 

NETWORKS 2201 replacement schemes in [9] and [14]. 

It is composed of 300 wireless nodes deployed over a 

square area of a side equal to 200 m. Nodes can be static, 

positioned according to a uniform random distribution, or 

mobile, wandering according to a random-direction 

mobility model with reflections. The node speed is 

uniformly distributed in the range [0.5vm, 1.5vm], where 

vm is the average node speed—a varying parameter in our 

simulations. The node radio range is set to 20 m, 

resulting, for static nodes, in a fully connected network. In 

all the scenarios, we deploy two fixed gateway nodes at 

opposite ends of the topology. Each gateway permanently 

stores 1/2 of the information items, whereas the other half 

is provided by the other gateway. Initially, nodes have an 

empty cache; they randomly request any among the I 

items that are not in their cache according to a Poisson 

process with parameter λi = Λqi (1 ≤ i ≤ I). Λ is the query 

generation rate per node, whereas qi represents the 

content popularity level (i.e., the probability that, among 

all possible content, a node requests item i). The TTL 

value for query messages is set to ten and five hops for 

the case of large- and small-sized caches, respectively, 

and the query lag time is 50 ms. Note that the impact of 

all the aforementioned query propagation parameters on 

the information-sharing behavior has been studied in [23]; 

here, we only consider what has been identified as a good 

parameter setting. With regard to the Hamlet parameters, 

the estimation frequency is such that 1/f = 0.2MC; indeed, 

through extensive simulations, we observed that the 

impact of f is negligible, as long as 1/f is not greater than 

20% of the maximum caching time. As we fix τ = fMC, 

this setting of f leads to a value of τ as small as 5. Then, 

we have α = 0.9 andW = 0.5; indeed, we have verified that 

this combination yields a smoother behavior of the 

presence index pi(n, j). The values of the remaining 

parameters are separately specified for large- and small-

sized caches. The information-sharing application lies on 

top of a User Datagram Protocol (UDP)-like transport 

protocol, whereas, at the media access control (MAC) 

layer, the IEEE 802.11 standard in the promiscuous mode 

is employed. No routing algorithm is implemented: 

queries use a MAC-layer broadcast transmission, and 

information messages find their way back to the 

requesting node following a unicast path. Information 

messages exploit the request to send/clear to send 

(RTS/CTS) mechanism and MAC-level retransmissions, 

whereas query messages of broadcast nature do not use 

RTS/CTS and are never retransmitted. The channel 

operates at 11 Mb/s, and signal propagation is reproduced 

by a two-ray ground model. Simulations were run for 10 

000 s. In the aforementioned scenarios, our performance 

evaluation hinges upon the following quite-

comprehensive set of metrics that are aimed at 

highlighting the benefits of using Hamlet in a distributed 

scenario: 

 

1) the ratio between solved and generated queries, called 

solved-queries ratio; 

2) the communication overhead; 

3) the time needed to solve a query; 

4) the cache occupancy. 

 

We have further recorded the spatiotemporal distribution 

of information and the statistics of information survival, 

because they help in quantifying the effectiveness of 

Hamlet in preserving access to volatile information. As 

aforementioned, we did not explore the problem of cache 

consistency, because such an 

issue is orthogonal to this paper.  
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Vi. Evaluation With Large-Sized Caches  
Here, we evaluate the performance of Hamlet in a 

network of nodes with large storage capabilities, i.e., with 

caches that can store up to 50% of all information items. 

Because such characteristics are most likely found in 

vehicular communication devices, tablets, or 

smartphones, the network environments under study are 

the City and Mall scenarios. As discussed in Section IV, 

in this case, the Hamlet framework is employed to 

compute the caching time for information chunks 

retrieved by nodes, with the goal of improving the content 

distribution in the network while keeping the resource 

consumption low. 

We first compare Hamlet’s performance to the 

results obtained with a deterministic caching strategy, 

called DetCache, which simply drops cached chunks after 

a fixed amount of time. Then, we demonstrate the 

effectiveness of Hamlet in the specific task of information 

survival. In all tests, we assume I = 10 items, each 

comprising C = 30 chunks. All items have identical 

popularity, i.e., all items are requested with the same 

rate λ = Λ/I by all network nodes. The choice of equal 

request rates derives from the observation that, in the 

presence of nodes with a large-sized memory, caching an 

information item does not imply discarding another 

information item; thus, the caching dynamics of the 

different items are independent of each other and only 

depend on the absolute value of the query rate. It follows 

that considering a larger set of items would not change 

the results but only lead to more time-consuming 

simulations. Each query includes 20 B plus 1 B for each 

chunk request, whereas information messages include a 

20-B header and carry a 1024-B information chunk. The 

maximum caching time MC is set to 100 s, unless 

otherwise specified. Queries for chunks that are still 

missing are periodically issued every 5 s until either the 

information is fully retrieved or a timeout that is set to 25 

expires.  

 

A. Benchmarking Hamlet 

We set the deterministic caching time in DetCache to 40 

s, and we couple DetCache and Hamlet with both the 

mitigated flooding and Eureka techniques for query 

propagation. We are interested in the following two 

fundamental metrics: 1) the ratio of queries that were 

successfully solved by the system and 2) the amount of 

query traffic that was generated. The latter metric, in 

particular, provides an indication of the system 

effectiveness in preserving locally rich information 

content: if queries hit upon the sought information in one 

or two hops, then the query traffic is obviously low. 

However, whether such a wealth of information is the 

result of a resource-inefficient cache-all-you-see strategy 

or a sensible cooperative strategy, e.g., the approach 

fostered by Hamlet, remains to be seen. Thus, additional 

metrics that are related to cache occupancy 

 

TABLE I AVERAGE OCCUPANCY OF THE NODE 

CACHES, EXPRESSED AS A PERCENTAGE OF THE 

CHUNKS TOTAL NUMBER FOR λ = 0.003 and 

information cache drop time must be coupled with the 

aforementioned metrics. Fig. 5 shows the solved-queries 

ratio (top plot) and the amount of query traffic (bottom 

plot) as λ varies in the City scenario. When DetCache is 

used, the higher the query rate, the larger the number of 

nodes that cache an information item. This case implies 

that content can be retrieved with higher probability and 

also that it is likely to be found in the proximity of the 

requesting node, thus reducing the query traffic per issued 

request. Note that, due to its efficient query propagation 

mechanism, Eureka reduces the propagation of useless 

queries (and,hence, collisions), yielding a higher solved-

queries ratio than mitigated flooding. However, it is 

evident that deterministic caching does not pay off as 

much as cooperative caching does in Hamlet. Table I 

shows that the average occupancy of node caches in 

Hamlet is comparable to the values observed with 

DetCache. Thus, it is the quality, not the quantity, of the 

information cached by Hamlet that allows it to top a 

sophisticated propagation scheme such as Eureka as far as 

the solved-queries ratio is concerned. The positive effect 

of the caching decisions can also be observed in Fig. 5 in 

terms of the reduced overhead and latency 

 

TABLE II 
 

AVERAGE QUERY SOLVING TIME (IN SECONDS), 

WITH λ = 0.003 in solving queries. Indeed, Hamlet 

reduces the overhead by shortening the distance between 

requesting nodes and desired information content. 

Similarly, Table II shows how sensible caching choices 

can significantly reduce the time required to solve 

queries, again due to the homogeneous availability of 

information that they generate in the network. Further 

proof of such virtuous behavior by Hamlet is provided in 

Fig. 6, where mitigated flooding is used for query 

propagation. The figure depicts the time evolution of 

content presence over the road topology for one 

information item; in particular, the z-axis of each plot 

shows the fraction of different chunks that comprise an 

information item that are present in a squared area of 600 

m2. On the one hand, it can be observed that mitigated 

flooding with DetCache creates a sharp separation 

between the area where the content source resides, 

characterized by high item availability, and the region 

where, due to vehicular traffic dynamics, information-

carrying nodes rarely venture. On the other hand, Hamlet 

favors the diffusion of content over the entire scenario so 

that nodes in areas away from the information source can 

also be served. Fig. 7 refers to the Mall scenario. The poor 

performance of Eureka in this case is due to the lack of 

information items over large areas of the Mall scenario, 

resulting in queries not being forwarded and, thus, 

remaining unsolved [13]. Interestingly, Hamlet greatly 

reduces the query traffic for any λ, although providing a 

much higher solved-queries ratio. With regard to the 

caching occupancy, because Hamlet leads to results that 

are comparable with the results obtained with DetCache 

(see Table I, Mall scenario), it can be asserted that the 

performance gain achieved through Hamlet is due to the 
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more uniform content distribution across node caches. 

Finally, Table II confirms that such an improved 

availability of information shortens the waiting time to 

receive requested items. When comparing results obtained 

from the Mall and City scenarios, we note that the solved-

queries ratio is consistently lower. We recall that 

vehicular mobility in the City environment is 

characterized by scattered connectivity but high node 

speed, whereas the Mall environment provides a better 

network connectivity level but reduced node mobility. 

The low node mobility in the Mall keeps items away from 

the sources of unpopular items for long periods of time. 

Thus, the probability of solving requests for such rare 

content is low, unless an efficient caching scheme allows 

nodes to preserve at least a few copies of every item in 

every neighborhood, as Hamlet does. It is also worth 

pointing out that, with respect to the City environment, 

the Mall includes a smaller number of nodes; thus, fewer 

queries are issued, and a much smaller amount of query 

traffic is generated. Finally, we may wonder how well 

Hamlet performs with respect to DetCache when the 

cache time employed by the latter approach is set to a 

value other than 40 s. Through extensive 2206 IEEE 

TRANSACTIONS ON VEHICULAR TECHNOLOGY, 

VOL. 60, NO. 5, JUNE 2011 Fig. 13. Memory-

constrained mobile nodes: Query-solving ratio for each 

information item when using HybridCache and Hamlet, 

with I = 300. The plots refer to vm that is equal to 1 m/s 

(left) and 15 m/s (right). Furthermore, it is not only the 

sheer quantity of data that makes a difference but its 

spatial distribution also plays a major role. If several 

nodes cache a rare item but they are all very close to each 

other, queries that were generated in other areas of the 

network take more hops to be satisfied. This case happens 

with  HybridCache, as proven by the spatial distribution 

of the 100th, 200th, and 300th items, as shown in Fig. 

12(a). Conversely, the spatial distribution achieved by 

Hamlet, as shown in Fig. 12(b), is more uniform, leading 

to a faster more likely resolution of queries. We now 

compare the performance of HybridCache and Hamlet in 

the scenario with memory-constrained mobile nodes. We 

test the two schemes when I = 300 and for an average 

node speed vm equal to 1 and 15 m/s. The solved-queries 

ratio recorded with HybridCache and Hamlet on a per-

item basis are shown in Fig. 13. Comparing the left and 

right plots, we note that the node mobility, even at high 

speed, does not seem to significantly affect the results due 

to the high network connectivity level. The spatial 

redistribution of content induced by node movements 

negatively affects the accuracy of Hamlet’s estimation 

process, which explains the slight reduction in the solved 

query ratio at 15 m/s. That same movement favors 

HybridCache, at least at low speed, because it allows 

unpopular information to reach areas that are far from the 

gateway. However, the difference between the two 

schemes is evident, with Hamlet solving an average of 

20% requests more than HybridCache, when nodes move 

at 15 m/s. Note that, for the query resolution delay and the 

average cache utilization at the network nodes, we 

obtained qualitatively 

similar results as in the static case, with Hamlet achieving 

more homogeneous solving times and fairer distribution 

of content in the network than HybridCache. B. Impact of 

the Zipf Distribution Skewness Finally, we study the 

impact of the Zipf distribution exponent on the 

performance of the cache replacement strategies. We 

recall that an exponent that is equal to zero implies perfect 

homogeneity, i.e., Zipf distribution that degenerates into a 

uniform  distribution, whereas the difference in popularity 

among content becomes much more unbalanced as the 

exponent grows. We focus on a network where ten items 

are available and each node can cache at most one 

complete item. The choice of this setting is mandated by 

the fact that, in the presence of Fig. 14. Memory-

constrained static (top) and mobile (bottom) nodes: 

Solvedqueries ratio and query traffic as the Zipf 

distribution exponent varies when using HybridCache and 

Hamlet, with I = 10. hundreds of different items, 

unbalanced popularity distributions (i.e., exponents higher 

than 0.5) lead to very low λi for the 100 or so least 

popular items, thus making requests for such content 

extremely rare. Fig. 14 depicts the evolution of the 

solved-queries ratio and the query traffic as the Zipf 

exponent ranges vary. By comparing the two plots, we 

note that the presence of mobility (vm = 1 m/s) leads to a 

higher number of unsolved requests and in a larger 

amount of traffic generated within the network under 

HybridCache, because queries propagate far from the 

source without finding the desired item. However, what is 

most interesting is how the network load tends to decrease 

as the Zipf exponent grows, both in the  absence and 

presence of node movements. On the one hand, higher 

values of the exponent lead to more unbalanced query 

rates, with very few items that are extremely popular and 

a long tail of seldom-accessed data. 

Being requested so often, popular items become 

commonly found in nodes caches, and the relative queries 

are solved faster, generating small traffic. On the other, 

when the Zipf exponent is small, the distribution of 

queries is more balanced, with information more evenly 

distributed in the network. This case implies that items 

can usually be found but are hardly cached very close to 

the requesting node. Thus, the different items are  all 

requested at a fairly high rate but are not immediately 

found, generating larger query traffic.  
 

VIII. Conclusion 
We have introduced Hamlet, which is a caching strategy 

for ad hoc networks whose nodes exchange information 

items in a peer-to-peer fashion. Hamlet is a fully 

distributed scheme FIORE et al.: CACHING 

STRATEGIES BASED ON INFORMATION DENSITY 

ESTIMATION IN AD HOC NETWORKS 2207 where 

each node, upon receiving a requested information, 

determines the cache drop time of the information or 

which content to replace to make room for the newly 

arrived information. These decisions are made depending 

on the perceived ―presence‖ of the content in the node’s 

proximity, whose estimation does not cause any 

additional overhead to the information sharing system. 
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We showed that, due to Hamlet’s caching of information 

that is not held by nearby nodes, the solving probability of 

information queries is increased, the overhead traffic is 

reduced with respect to benchmark caching strategies, and 

this result is consistent in vehicular, pedestrian, and 

memoryconstrained scenarios. Conceivably, this paper 

can be extended in the future by addressing content 

replication and consistency. The procedure for 

information presence estimation that was developed in 

Hamlet can be used to select which content should be 

replicated and at which node (even if such a node did not 

request the content in the first place). In addition, Hamlet 

can be coupled with solutions that can maintain 

consistency among copies of the same information item 

cached at different network nodes, as well as with the 

versions stored at gateway nodes. 
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