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 Abstract 
         Nathanson [17] paved the way for the emergence of a new class of graphs, namely,Arithmetic Graphs  by introducing

the  concepts  of  Number  Theory,  particularly, the Theory   of  congruences  in Graph Theory. Cayley graphs are another 

class of graphs associated with the elements of a group. If this group is associated with some arithmetic function then the 

Cayley graph becomes an arithmetic graph. Domination theory is an important branch of Graph Theory and has many 

applications in Engineering, Communication Networks  and  many others. In this paper we study the minimal total 

dominating functions of Quadratic Residue Cayley graphs and discuss the convexity of these   functions in different cases. 
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 1. Introduction 
There is a class of graphs, namely, Cayley graphs, whose vertex set V is the set of elements of a group (G, .) and 

two vertices x and y of G are adjacent if and only if xy
-1

 is in some symmetric subset S of G. A subset S of a group (G, .) is 

called a symmetric subset of G if  s
-1

 is in S for all s in S. If the group    (G, .) is the additive group (Zn ,  ) of integers 

0,1,2,……..,n-1 modulo n, and the symmetric set S is associated with some arithmetic function, then the Cayley Graph may 

be treated as an arithmetic graph. In this paper we consider Quadratic Residue Cayley graphs. A detailed study of 

convexity and minimality of dominating functions and total dominating functions are given in Cockayne et al. [2,3-12]  

Chesten et al. [1], Yu [18]   and Domke et al. [13,14]. Algorithmic complexity results for these parameters are given in 

Laskar et al. [15] and Cockayne et al.[3].We start with the definition of a Quadratic Residue Cayley graph. 

  

Quadratic Residue Cayley Graph 

 Let p be an odd prime and n, a positive integer such that n ≡ 0 (mod p). If the quadratic congruence, 

)(mod2 pnx  has a solution then, n is called a quadratic residue mod p. 

 The Quadratic Residue Cayley graph G(Zp , Q), is the Cayley graph associated with the set of quadratic residues 

modulo an odd prime p, which is defined as follows. Let p be an odd prime, S, the set of quadratic residues modulo p and 

let S* = {s, n - s /  s  S, s ≠ n }. The quadratic residue Cayley graph G(Zp , Q) is defined as the graph whose vertex set 

is Zp = { 0 , 1 , 2 , …… p – 1} and the edge set is E = { ( x , y ) / x – y or y - x   S*}. 

For example the graph of G(Z19, Q) is given below. 
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2. Total Dominating Functions 
 

Total Dominating Set : Let G(V, E) be a graph without isolated vertices. A subset T of V is called a total dominating set 

(TDS) if every vertex in V is adjacent to at least   one vertex in T.  

 

Minimal Total Dominating Set : If no proper subset of T is a total dominating set, then T is called a minimal total 

dominating set (MTDS) of G. 

 

Neighbourhood Set : The open  neighbourhood of a vertex u is the set of vertices adjacent to u and is denoted by N(u). 

 

Total Dominating Function : Let G(V, E) be a graph without isolated vertices. A function : [0,1]f V   is called         

a total dominating function (TDF) if 

( )

( ( )) ( ) 1
u N v

f N v f u


   for all  v  V.  

Minimal Total Dominating Function : Let f and g be functions from V→ [0,1]. We define f < g  if f(u)   g(u),  uV, 

with  strict inequality for at least one vertex u. A TDF f is called a minimal total dominating function (MTDF) if for all      

g < f, g is not a TDF. 

We require the following results whose proofs are presented in [16]. 

Lemma 1: The Quadratic Residue Cayley  graph G(Zp , Q) is *S - regular, and  the number of edges in G(Zp, Q)             

is  
2

*SpZ
.         

Theorem 1: The Quadratic Residue Cayley  graph G(Zp , Q) is complete if p is of the form 4m+3. 

 Suppose p = 4m + 3. Then G(Zp, Q) is complete.  Then each vertex is of degree p – 1. That is the graph  G(Zp, Q)   

is (p – 1) – regular.  

  S
*
 = p – 1.  

Hence each   N(v) consists of  p-1 vertices , vV.  

We consider the case p = 4m+3 of  G(Zp , Q ) and prove the following results.  

 3. MAIN RESULTS 

Theorem 3.1:  Let T be a MTDS of G(Zp, Q). Let : [0,1]f V   be a function  defined by   

                

1, ,
( )

0, .

if v T
f v

if v V T


 

 
  

 Then f becomes a MTDF of G(Zp, Q). 

Proof: Consider G(Zp, Q). Let T be a MTDS of G(Zp, Q). 

 Since G(Zp, Q) is complete,   2.T 
 

Also every neighbourhood N(v) of v  V consists of (p-1) –vertices. 

Let f be a function defined on V as in the hypothesis. 

Then the summation values taken over the neighbourhood N(v) of v  V is  

 

( )

2, ,
( )

1, .u N v

if u V T
f u

if u T

 
 


  

Therefore     

          ( )

( ) 1
u N v

f u


 ,  v  V.  

This implies that f is a TDF.  

We now check for the minimality of  f. 

Define a function : [0,1]g V    by 
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, , ,

( ) 1, { },

0, .

k

k

r if v T v v

g v if v T v

if v V T

 


  
  

    

where 0 < r < 1 and vk  V. 

Since strict inequality holds at the vertex v = vk  T of V, it follows that  g < f. 

Then  

 

( )

1 , ,

( ) 1, , ,

, , .

k

u N v

k

r if v V T

g u if v T v v

r if v T v v


  


  
  

  

Thus

( )

( ) 1, .
u N v

g u v V


    

This implies that g is not a TDF.  Since r < 1 is arbitrary it follows that there exists no g < f such that g is a TDF.   

Thus f is a MTDF.           

Theorem 3.2: Let T1 and T2 be two MTDSs of G(Zp, Q) and 1 2,f f  be two functions of G(Zp, Q) defined by  

   1

1

1, ,

0, .

if v T
f v

otherwise


 


 

and   2

2

1, ,

0, .

if v T
f v

otherwise


 


  

Then the convex combination of 1f  and 2f becomes a TDF of G(Zp, Q) but not minimal. 

Proof:   Let T1 and T2 be two MTDSs of      G(Zp, Q) and 1f  , 2f  be the functions defined as in the hypothesis. Then by 

Theorem 3.1, the above functions are MTDFs of G(Zp, Q). 

Let 1 2( ) ( ) ( )h v f v f v   , where 1 0 1, 0 1.and          

Case 1: Suppose T1 and T2 are such that 1 2T T   . 

Then the possible values of h(v) are  

                 

1 2

2 1

1 2

, T T ,

, T T ,
( )

, {T T },

0, .

if v and v

if v and v
h v

if v

otherwise





 

  


 
 

  


 

Since each   neighbourhood N(v) of v in V consists of (p-1) vertices of G(Zp, Q), the summation value of h(v) taken over 

N(v) is 

 

1 2

2 1

( ) 1 2

, T T ,

, T T ,
( )

, {T T },

2( ), .

u N v

if v and v

if v and v
h u

if v

otherwise

  

  

 

 



    


   
 

  
 

  

This implies that 

( )

( ) 1
u N v

h u


 ,   v  V. 

Therefore h is a TDF. We now check for the minimality of  h. 

Define a function : [0,1]g V   by  
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1 2

2 1

1 2

, T T ,

, T T ,
( )

, {T T },

0, .

if v and v

if v and v
g v

r if v

otherwise





  


 
 

 


 

where 0 < r < 1.  

Since strict inequality holds at 1 2{T T }v  , it follows that g < h. 

Now     

1 2

2 1

( ) 1 2

, T T ,

, T T ,
( )

, {T T },

, .

u N v

r if v and v

r if v and v
g u

if v

r otherwise





 

 



   


  
 

  
  

  

where 1r      and 1r    . 

Thus 

( )

( ) 1,
u N v

g u v V


   . 

Therefore g is a TDF. Hence it follows that h is a TDF but not minimal. 

Case 2: Suppose T1 and T2 are  disjoint. 

Then the possible values of h(v) are  

              

1

2

, T ,

( ) , T ,

0, .

if v

h v if v

otherwise








 



 

Since each   neighbourhood N(v) of v in V consists of (p-1) vertices of G(Zp, Q), the summation value of h(v) taken over 

N(v) is 

            

1

2

( )

2 , T ,

( ) 2 , T ,

2( ), .
u N v

if v

h u if v

otherwise

 

 

 


 


  
 

  

This implies 

( )

( ) 1
u N v

h u


 ,   v  V, since 1   . 

Therefore h is a TDF.  We now check for the minimality of  h. 

Define a function : [0,1]g V   by  

             

1

1

2

, T , ,

, T , ,
( )

, T ,

0, .

i

i

r if v v v

if v v v
g v

if v

otherwise





 


 
 





 

where 0 < r <  . 

Since strict inequality holds at 1T ,iv v  it follows that g < h. 
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Then 

1

1

( ) 2

2 , T , ,

2 , T , ,
( )

, T ,

2 , .

i

i

u N v

if v v v

r if v v v
g u

r if v

r otherwise

 



 

 



  


  
 

  
  

  

where 2 2(1 ) 2 1r           . 

i.e., 2 1r   . 

Thus 

( )

( ) 1,
u N v

g u v V


   . 

Therefore g is a TDF. Hence it follows that h is not a MTDF.          
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