
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1190

Design of Test Data Compressor/Decompressor Using Xmatchpro

Method

C. Suneetha*
1
,V.V.S.V.S.Ramachandram*

2

1
Research Scholar, Dept. of E.C.E., Pragathi Engineering College, JNTU-K, A.P. , India

2
 Associate Professor,

Dept.,of E.C.E., Pragathi Engineering College, E.G.Dist., A.P., India

Abstract
Higher Circuit Densities in system-on-chip (SOC)

designs have led to drastic increase in test data

volume. Larger Test Data size demands not only

higher memory requirements, but also an increase in

testing time. Test Data Compression/Decompression

addresses this problem by reducing the test data

volume without affecting the overall system

performance. This paper presented an algorithm,

XMatchPro Algorithm that combines the advantages of

dictionary-based and bit mask-based techniques. Our

test compression technique used the dictionary and bit

mask selection methods to significantly reduce the

testing time and memory requirements. We have

applied our algorithm on various benchmarks and

compared our results with existing test

compression/Decompression techniques. Our approach

results compression efficiency of 92%. Our approach

also generates up to 90% improvement in

decompression efficiency compared to other

techniques without introducing any additional

performance or area overhead.

Keywords - XMatchPro, decompression, test

compression, dictionary selection, SOC.

I. INTRODUCTION

1.1. Objective
With the increase in silicon densities, it is

becoming feasible for compression systems to be

implemented in chip. A system with distributed

memory architecture is based on having data

compression and decompression engines working

independently on different data at the same time.

This data is stored in memory distributed to each

processor. The objective of the project is to design a

lossless data compression system which operates in

high-speed to achieve high compression rate. By using

the architecture of compressors, the data compression

rates are significantly improved. Also inherent

scalability of architecture is possible.The main parts

of the system are the Xmatchpro based data

compressors and the control blocks providing

control signals for the Data compressors allowing

appropriate control of the routing of data into and from

the system. Each Data compressor can process four

bytes of data

into and from a block of data in every clock cycle. The

data entering the system needs to be clocked in at

a rate of 4 bytes in every clock cycle. This is to

ensure that adequate data is present for all compressors

to process rather than being in an idle state.

1.2. Goal of the Thesis
To achieve higher decompression rates using

compression/decompression architecture with least

increase in latency.

1.3. Compression Techniques
At present there is an insatiable demand for ever-

greater bandwidth in communication networks and

forever-greater storage capacity in computer

system. This led to the need for an efficient

compression technique. The compression is the

process that is required either to reduce the volume

of information to be transmitted – text, fax and

images or reduce the bandwidth that is required for its

transmission – speech, audio and video. The

compression technique is first applied to the source

information prior to its transmission. Compression

algorithms can be classified in to two types, namely

 Lossless Compression

 Lossy Compression

1.3.1. Lossless Compression
In this type of lossless compression algorithm, the aim

is to reduce the amount of source information to be

transmitted in such a way that, when the

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1191

compressed information is decompressed, there is

no loss of information. Lossless compression is said,

therefore, to be reversible. i.e., Data is not altered

or lost in the process of compression or

decompression. Decompression generates an exact

replica of the original object. The Various lossless

Compression Techniques are,

 Packbits encoding

 CCITT Group 3 1D

 CCITT Group 3 2D

 Lempel-Ziv and Welch algorithm LZW

 Huffman

 Arithmetic

Example applications of lossless compression are

transferring data over a network as a text file

since, in such applications, it is normally

imperative that no part of the source information is

lost during either the compression or

decompression operations and file storage systems

(tapes, hard disk drives, solid state storage, file

servers) and communication networks (LAN, WAN,

wireless).

1.3.2 Lossy Compression
The aim of the Lossy compression algorithms is

normally not to reproduce an exact copy of the

source information after decompression but rather a

version of it that is perceived by the recipient as a true

copy. The Lossy compression algorithms are:

 JPEG (Joint Photographic Expert Group)

 MPEG (Moving Picture Experts Group)

 CCITT H.261 (Px64)

Example applications of lossy compression are the

transfer of digitized images and audio and video

streams. In such cases, the sensitivity of the human eye

or ear is such that any fine details that may be

missing from the original source signal after

decompression are not detectable.

1.3.3 Text Compression
There are three different types of text – unformatted,

formatted and hypertext and all are represented as

strings of characters selected from a defined set. The

compression algorithm associated with text must be

lossless since the loss of just a single character could

modify the meaning of a complete string. The text

compression is restricted to the use of entropy

encoding and in practice, statistical encoding methods.

There are two types of statistical encoding methods

which are used with text: one which uses single

character as the basis of deriving an optimum set of

code words and the other which uses variable length

strings of characters. Two examples of the former are

the Huffman and Arithmetic coding algorithms and an

example of the latter is Lempel-Ziv (LZ) algorithm.

The majority of work on hardware approaches to

lossless data compression has used an adapted form of

the dictionary-based Lempel-Ziv algorithm, in which a

large number of simple processing elements are

arranged in a systolic array [1], [2], [3], [4].

II. PREVIOUS WORK ON LOSSLESS

COMPRESSION METHODS
A second Lempel-Ziv method used a content

addressable memory (CAM) capable of performing a

complete dictionary search in one clock cycle [5], [6],

[7]. The search for the most common string in the

dictionary (normally, the most computationally

expensive operation in the Lempel-Ziv algorithm) can

be performed by the CAM in a single clock cycle,

while the systolic array method uses a much

slower deep pipelining technique to implement its

dictionary search. However, compared to the CAM

solution, the systolic array method has advantages

in terms of reduced hardware costs and lower

power consumption, which may be more important

criteria in some situations than having faster dictionary

searching. In [8], the authors show that hardware

main memory data compression is both feasible

and worthwhile. The authors also describe the design

and implementation of a novel compression method,

the XMatchPro algorithm. The authors exhibit the

substantial impact such memory compression has on

overall system performance. The adaptation of

compression code for parallel implementation is

investigated by Jiang and Jones [9]. They

recommended the use of a processing array arranged in

a tree-like structure. Although compression can be

implemented in this manner, the implementation of

the decompressor’s search and decode stages in

hardware would greatly increase the complexity of

the design and it is likely that these aspects would

need to be implemented sequentially. An FPGA

implementation of a binary arithmetic coding

architecture that is able to process 8 bits per clock

cycle compared to the standard 1 bit per cycle is

described by Stefo et al [10]. Although little research

has been performed on architectures involving several

independent compression units working in a

concurrent cooperative manner, IBM has introduced

the MXT chip [11], which has four independent

compression engines operating on a shared memory

area. The four Lempel-Ziv compression engines are

used to provide data throughput sufficient for

memory compression in computer servers. Adaptation

of software compression algorithms to make use of

multiple CPU systems was demonstrated by research

of Penhorn [12] and Simpson and Sabharwal [13].

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1192

Penhorn used two CPUs to compress data using a

technique based on the Lempel-Ziv algorithm and

showed that useful compression rate improvements

can be achieved, but only at the cost of increasing the

learning time for the dictionary. Simpson and

Sabharwal described the software implementation of

compression system for a multiprocessor system

based on the parallel architecture developed by

Gonzalez and Smith and Storer [14].

Statistical Methods
 Statistical Modeling of lossless data compression

system is based on assigning values to events

depending on their probability. The higher the value,

the higher the probability. The accuracy with which

this frequency distribution reflects reality determines

the efficiency of the model. In Markov modeling,

predictions are done based on the symbols that precede

the current symbol. Statistical Methods in hardware

are restricted to simple higher order modeling using

binary alphabets that limits speed, or simple multi

symbol alphabets using zeroeth order models that

limits compression. Binary alphabets limit speed

because only a few bits (typically a single bit) are

processed in each cycle while zeroeth order

models limit compression because they can only

provide an inexact representation of the statistical

properties of the data source.

 Dictionary Methods
Dictionary Methods try to replace a symbol or group of

symbols by a dictionary location code. Some

dictionary-based techniques use simple uniform

binary codes to process the information supplied.

Both software and hardware based dictionary models

achieve good throughput and competitive compression.

The UNIX utility ‘compress’ uses Lempel-Ziv-2

(LZ2) algorithm and the data compression Lempel-

Ziv (DCLZ) family of compressors initially

invented by Hewlett-Packard[16] and currently

being developed by AHA[17],[18] also use LZ2

derivatives. Bunton and Borriello present another

LZ2 implementation in [19] that improves on the

Data Compression Lempel-Ziv method. It uses a tag

attached to each dictionary location to identify which

node should be eliminated once the dictionary becomes

full.

XMatchPro Based System
The Lossless data compression system is a derivative

of the XMatchPro Algorithm which originates from

previous research of the authors [15] and advances

in FPGA technology. The flexibility provided by using

this technology is of great interest since the chip can be

adapted to the requirements of a particular application

easily. The drawbacks of some of the previous

methods are overcome by using the XmatchPro

algorithm in design. The objective is then to obtain

better compression ratios and still maintain a high

throughput so that the compression/decompression

processes do not slow the original system down.

Usage of XMatchPro Algorithm

The Lossless Data Compression system designed uses

the XMatchPro Algorithm. The XMatchPro algorithm

uses a fixed-width dictionary of previously seen data

and attempts to match the current data element with a

match in the dictionary. It works by taking a 4-byte

word and trying to match or partially match this word

with past data. This past data is stored in a

dictionary, which is constructed from a content

addressable memory. As each entry is 4 bytes wide,

several types of matches are possible. If all the bytes

do not match with any data present in the

dictionary they are transmitted with an additional

miss bit. If all the bytes are matched then the match

location and match type is coded and transmitted, this

match is then moved to the front of the

dictionary. The dictionary is maintained using a move

to front strategy whereby a new tuple is placed at the

front of the dictionary while the rest move down

one position. When the dictionary becomes full the

tuple placed in the last position is discarded leaving

space for a new one. The coding function for a match is

required to code several fields as follows:

A zero followed by:

1). Match location: It uses the binary code associated to

the matching location. 2). Match type: Indicates which

bytes of the incoming tuple have matched. 3).

Characters that did not match transmitted in literal

form. A description of the XMatchPro algorithm in

pseudo-code is given in the figure below.

Pseudo Code for XMatchPro Algorithm

With the increase in silicon densities, it is

becoming feasible for XMatchPros to be

implemented on a single chip. A system with

distributed memory architecture is based on having

data compression and decompression engines

working independently on different data at the same

time.This data is stored in memory distributed to each

processor. There are several approaches in which data

can be routed to and from the compressors that will

affect the speed, compression and complexity of the

system. Lossless compression removes redundant

information from the data while they are transmitted or

before they are stored in memory. Lossless

decompression reintroduces the redundant information

to recover fully the original data. There are two

important contributions made by the current

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1193

compression & decompression work, namely,

improved compression rates and the inherent

scalability. Significant improvements in data

compression rates have been achieved by sharing

the computational requirement between compressors

without significantly compromising the contribution

made by individual compressors. The scalability

feature permits future bandwidth or storage demands to

be met by adding additional compression engines.

The XMatchPro based Compression system
The XMatchPro algorithm uses a fixed width

dictionary of previously seen data and attempts to

match the current data element with a match in the

dictionary. It works by taking a 4-byte word and trying

to match this word with past data. This past data is

stored in a dictionary, which is constructed from a

content addressable memory. Initially all the entries in

the dictionary are empty & 4-bytes are added to the

front of the dictionary, while the rest move one

position down if a full match has not occurred. The

larger the dictionary, the greater the number of address

bits needed to identify each memory location, reducing

compression performance. Since the number of bits

needed to code each location address is a function

of the dictionary size greater compression is

obtained in comparison to the case where a fixed

size dictionary uses fixed address codes for a partially

full dictionary.In the XMatchPro system, the data

stream to be compressed enters the compression

system, which is then partitioned and routed to the

compressors.

The Main Component- Content Addressable

Memory

Dictionary based schemes copy repetitive or

redundant data into a lookup table (such as CAM)

and output the dictionary address as a code to replace

the data.

The compression architecture is based around a

block of CAM to realize the dictionary. This is

necessary since the search operation must be done in

parallel in all the entries in the dictionary to allow high

and data-independent

Fig..Conceptual view of CAM

The number of bits in a CAM word is usually

large, with existing implementations ranging from

36 to 144 bits. A typical CAM employs a table

size ranging between a few hundred entries to 32K

entries, corresponding to an address space ranging

from 7 bits to 15 bits. The length of the CAM varies

with three possible values of 16, 32 or 64 tuples trading

complexity for compression. The no. of tuples present

in the dictionary has an important effect on

compression. In principle, the larger the dictionary

the higher the probability of having a match and

improving compression. On the other hand, a bigger

dictionary uses more bits to code its locations

degrading compression when processing small data

blocks that only use a fraction of the dictionary

length available. The width of the CAM is fixed with

4bytes/word. Content Addressable Memory (CAM)

compares input search data against a table of stored

data, and returns the address of the matching data.

CAMs have a single clock cycle throughput

making them faster than other hardware and

software-based search systems. The input to the

system is the search word that is broadcast onto the

searchlines to the table of stored data. Each stored

word has a matchline that indicates whether the

search word and stored word are identical (the match

case) or are different (a mismatch case, or miss). The

matchlines are fed to an encoder that generates a

binary match location corresponding to the matchline

that is in the match state. An encoder is used in systems

where only a single match is expected.

 The overall function of a CAM is to take a search

word and return the matching memory location.

 Managing Dictionary entries
Since the initialization of a compression CAM sets

all words to zero, a possible input word formed by

zeros will generate multiple full matches in

different locations.The Xmatchpro compression

system simply selects the full match closer to the top.

This operational mode initializes the dictionary to a

state where all the words with location address

bigger than zero are declared invalid without the need

for extra logic.

Iii. Xmatchpro Lossless Compression System

 DESIGN METHODOLOGY
The XMatchPro algorithm is efficient at

compressing the small blocks of data necessary with

cache and page based memory hierarchies found in

computer systems. It is suitable for high performance

hardware implementation. The XMatchPro hardware

achieves a throughput 2-3 times greater than other

high-performance hardware implementation. The core

component of the system is the XMatchPro based

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1194

Compression/ Decompression system. The

XMatchPro is a high-speed lossless dictionary

based data compressor. The XMatchPro algorithm

works by taking an incoming four-byte tuple of

data and attempting to match fully or partially match

the tuple with the past data.

FUNCTIONAL DESCRIPTION

The XMatchPro algorithm maintains a dictionary

of data previously seen and attempts to match the

current data element with an entry in the

dictionary, replacing it with a shorter code referencing

the match location. Data elements that do not produce a

match are transmitted in full (literally) prefixed by

a single bit. Each data element is exactly 4 bytes in

width and is referred to as tuple. This feature gives a

guaranteed input data rate during compression and thus

also guaranteed data rates during decompression,

irrespective of the data mix. Also the 4-byte tuple

size gives an inherently higher throughput than other

algorithms, which tend to operate on a byte stream.

The dictionary is maintained using move to front

strategy, where by the current tuple is placed at

the front of the dictionary and the other tuples

move down by one location as necessary to make

space. The move to front strategy aims to exploit

locality in the input data. If the dictionary becomes

full, the tuple occupying the last location is simply

discarded.

A full match occurs when all characters in the

incoming tuple fully match a dictionary entry. A

partial match occurs when at least any two of the

characters in the incoming tuple match exactly with

a dictionary entry, with the characters that do not

match being transmitted literally.

 The use of partial matching improves the compression

ratio when compared with allowing only 4 byte

matches, but still maintains high throughput. If

neither a full nor partial match occurs, then a miss is

registered and a single miss bit of ‘1’ is transmitted

followed by the tuple itself in literal form. The only

exception to this is the first tuple in any compression

operation, which will always generate a miss as the

dictionary begins in an empty state. In this case no

miss bit is required to prefix the tuple.

At the beginning of each compression operation,

the dictionary size is reset to zero. The dictionary

then grows by one location for each incoming tuple

being placed at the

 front of the dictionary and all other entries in the

dictionary moving down by one location. A full

match does not grow the dictionary, but the move-

to-front rule is still applied. This growth of the

dictionary means that code words are short during the

early stages of compressing a block. Because the

XMatchPro algorithm allows partial matches, a

decision must be made about which of the

locations provides the best overall match, with the

selection criteria being the shortest possible number of

output bits.

Implementation of Xmatchpro Based Compressor
The block diagram gives the details about the

components of a single 32 bit Compressor. There

are three components namely, COMPARATOR,

ARRAY, CAMCOMPARATOR. The comparator is

used to compare two 32-bit data and to set or reset the

output bit as 1 for equal and 0 for unequal. The CAM

COMPARATOR searches the CAM dictionary entries

for a full match of the input data given. The reason for

choosing a full match is to get a prototype of the high

throughout Xmatchpro compressor with reduced

complexity and high performance.

If a full match occurs, the match-hit signal is

generated and the corresponding match location is

given as output by the CAM Comparator.. If no full

match occurs, the corresponding data that is given as

input at the given time is got as output.

 32 BIT COMPRESSIONS

 Array is of length of 64X32 bit locations. This is

used to store the unmatched incoming data and

when a new data comes, the incoming data is

compared with all the data stored in this array. If

a match occurs, the corresponding match location

is sent as output else the incoming data is stored

in next free location of the array & is sent as

output. The last component is the cam comparator and

is used to send the match location of the CAM

dictionary as output if a match has occurred. This is

done by getting match information as input from the

comparator.

Suppose the output of the comparator goes high for any

input, the match is found and the corresponding

address is retrieved and sent as output along with

one bit to indicate that match is found. At the same

time, suppose no match occurs, or no matched data is

found, the incoming data is stored in the array and it is

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1195

sent as the output. These are the functions of the three

components of the Compressor

IV.Design of Lossless

Compression/Decompression System
DESIGN OF COMPRESSOR / DECOMPRESSOR
The block diagram gives the details about the

components of a single 32-bit compressor /

decompressor. There are three components namely

COMPRESSOR, DECOMPRESSOR and CONTROL.

The compressor has the following components -

COMPARATOR, ARRAY, and

CAMCOMPARATOR.

The comparator is used to compare two 32-bit data and

to set or reset the output bit as 1 for equal and 0 for

unequal.

Array is of length of 64X32bit locations. This is

used to store the unmatched in coming data and

when the next new data comes, that data is compared

with all the data stored in this array. If the incoming

data matches with any of the data stored in array, the

Comparator generates a match signal and sends it

to Cam Comparator.

The last component is the Cam comparator and is

used to send the incoming data and all the stored

data in array one by one to the comparator.

Suppose output of comparator goes high for any

input, then the match is found and the

corresponding address (match location) is retrieved

and sent as output along with one bit to indicate the

match is found. At the same time, suppose no match is

found, then the incoming data stored in the array is

sent as output. These are the functions of the

three components of the XMatchPro based

compressor.

The decompressor has the following components –

Array and Processing Unit.

Array has the same function as that of the array unit

which is used in the Compressor. It is also of the same

length. Processing unit checks the incoming match hit

data and if it is 0, it indicates that the data is not

present in the Array, so it stores the data in the Array

and if the match hit data is 1, it indicates the data is

present in the Array, then it instructs to find the data

from the Array with the help of the address input and

sends as output to the data out.

Fig. Block Diagram of 32 bit

Compressor/Decompression

The Control has the input bit called C / D i.e.,

Compression / Decompression Indicates whether

compression or decompression has to be done. If it has

the value 0 then omcpressor is stared when the value is

1 decompression is done

V. Result Analysis

1 SYNTHESIS REPORT

Release 8.2i - xst I.31

Copyright (c) 1995-2006 Xilinx, Inc. All rights

reserved.

--> Parameter TMPDIR set to ./xst/projnav.tmp

CPU : 0.00 / 0.17 s | Elapsed : 0.00 / 0.00 s

--> Parameter xsthdpdir set to ./xst

CPU : 0.00 / 0.17 s | Elapsed : 0.00 / 0.00 s

--> Reading design: ds.prj

Table of Contents

 Synthesis Options Summary

 HDL Compilation

 Design Hierarchy Analysis

 HDL Analysis

 HDL Synthesis

 HDL Synthesis Report

 Advanced HDL Synthesis

 Advanced HDL Synthesis Report

 Low Level Synthesis

Partition ReportRESULTS

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1196

 COMPARATOR

COMPARATOR waveform explanation

Whenever the reset signal is active low then only the

data is compared otherwise i.e. if it is active high the

eqout signal is zero. Here we are applying 3 4 5 6 7

8 as data1 and 4 5 8 as data2. So after comparing

the inputs the output signal eqout raises at the data 4

and 8 instants which indicate the output signal.

COMPARATOR function

Suppose the output of the comparator goes high for

any input, the match is found and the corresponding

address is retrieved and sent as output along

with one bit to indicate that match is found. At the

same time, suppose no match occurs, or no matched

data is found, the incoming data is stored in the array

and it is sent as the output.

 CAM

Fig. CAM data input Waveform

Fig. CAM data output Waveform

CAM waveform explanation

Whenever the reset signal is active low then only the

cam produces the corresponding address and the

match hit signal by individually raise the

corresponding hit otherwise i.e. if it is active high it

doesn’t produces any signal. In order to obtain the

outputs the start should be in active low state.

CAM function

The cam is used to send the match location Of the

CAM dictionary as output if a match has occurred.

This is done by getting match Information as input

from the comparator.

 Compression

Fig. Compression of INPUT DATA waveform

Compression waveform explanation

Whenever the reset1 and start1 signal is active low

then only the compression of data is occurred. Here

every signal reacts at the clk1 rising edge only

because it is meant for positive edge triggering. The

data which has to be compressed is applied at the

udata signal and the resultant data is obtained at the

dataout signal which is nothing but compressed data.

Whenever there is a redundancy data is there in the

applied data then the matchhit signal will be in active

high state by generating the corresponding address

signal addrout.

Compression function

The compression engine main intension is to

compress the incoming content for memory reduction

purpose and to transfer the data very easily.

 Decompression

Fig. Decompression of the data

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1197

Decompression waveform explanation

 Whenever the reset and start_de signal is active

low then only the decompression of data is occurred.

Here every signal reacts at the clk1 rising edge only

because it is meant for positive edge triggering. Here

for retrieving the original data the outputs of the

compressor engine has to be applied as inputs for the

decompression engine.

Decompression function

The decompression engine main intension is to

retrieve the original content.

SCHEMATIC

Compression

Fig. RTL Schematic of compression waveform of

component level

Fig. RTL Schematic of compression waveform of

circuit level

Fig.RTL Schematic of compression waveform of

chip level

 Decompression

Fig RTL Schematic of decompression waveform

of component level

Fig. RTL Schematic of decompression waveform

of circuit level

Fig. RTL Schematic of decompression waveform

of chip level

VI.CONCLUSION

The various modules are designed and coded using

VHDL. The source codes are simulated and the

various waveforms are obtained for all the

modules. Since the Compression/Decompression

system uses XMatchPro algorithm, speed of

compression throughput is high.

The Improved Compression ratio is achieved in

Compression architecture with least increase in

latency. The High speed throughput is achieved. The

architecture provides inherent scalability in future.

The total time required to transmit compressed

data is less than that of

Transmitting uncompressed data. This can lead to a

performance benefit, as the bandwidth of a link

appears greater when transmitting compressed data

and hence more data can be transmitted in a given

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1198

amount of time.

Higher Circuit Densities in system-on-chip (SOC)

designs have led to drastic increase in test data

volume. Larger Test Data size demands not only

higher memory requirements, but also an increase in

testing time. Test Data Compression/Decompression

addresses this problem by reducing the test data

volume without affecting the overall system

performance. This paper presented an algorithm,

XMatchPro Algorithm that combines the advantages

of dictionary-based and bit mask-based techniques.

Our test compression technique used the dictionary

and bit mask selection methods to significantly

reduce the testing time and memory requirements.

We have applied our algorithm on various

benchmarks and compared our results with existing

test compression/Decompression techniques. Our

approach results compression efficiency of 92%. Our

approach also generates up to 90% improvement in

decompression efficiency compared to other

techniques without introducing any additional

performance or area overhead.

Vii. Future Scope
There is a potential of doubling the performance

of storage / communication system by increasing

the available transmission bandwidth and data

capacity with minimum investment. It can be applied

in Computer systems, High performance storage

devices. This can be applied to 64 bit also in order to

increase the data transfer rate. There is a chance to

easy migration to ASIC technology which enables 3-

5 times increase in performance rate. There is a

chance to develop an engine which does not require

any external components and supports operation on

blocked data. Full-duplex operation enables

simultaneous compression /decompression for a

combined performance of high data rates, which also

enables self-checking test mode using CRC (Cyclic

Redundancy Check). High-performance coprocessor-

style interface should be possible if synchronization

is achieved. Chance to improve the Compression

ratio compare with proposed work.

VIII. Acknowledgements
The authors would like to thank everyone, whoever

remained a great source of help and inspirations in

this humble presentation. The authors would like to

thank Pragathi Engineering College Management for

providing necessary facilities to carry out this work.

References
[1]. Li, K. Chakrabarty, and N. Touba, “Test

data compression using dictionaries with

selective entries and fixed-length indices,”

ACM Trans.Des. Autom. Electron. Syst.,

vol. 8, no. 4, pp. 470–490, 2003.

[2]. Wunderlich and G. Kiefer, “Bit-flipping

BIST,” in Proc. Int. Conf. Comput.Aided

Des., 1996, pp. 337–343.

[3]. N. Touba and E. McCluskey, “Altering a

pseudo-random bit sequence for scan based

bist,” in Proc. Int. Test Conf., 1996, pp.

167–175.

[4]. F. Hsu, K. Butler, and J. Patel, “A case

study on the implementation of Illinois scan

architecture,” in Proc. Int. Test Conf., 2001,

pp. 538–547.

[5]. M. Ros and P. Sutton, “A hamming distance

based VLIW/EPIC code compression

technique,” in Proc. Compilers, Arch.,

Synth. Embed. Syst., 2004, pp. 132–139.

[6]. Seong and P. Mishra, “Bitmask-based code

compression for embed systems,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 27, no. 4, pp. 673–685, Apr.

2008.

[7]. M.-E. N. A. Jas, J. Ghosh-Dastidar, and N.

Touba, “An efficient test vector compression

scheme using selective Huffman coding,”

IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 22, no. 6, pp.797–806,

Jun. 2003.

[8]. A. Jas and N. Touba, “Test vector

decompression using cyclical scan chains

and its application to testing core based

design,” in Proc. Int.Test Conf., 1998, pp.

458–464.

[9]. A. Chandra and K. Chakrabarty, “System on

a chip test data compression and

decompression architectures based on

Golomb codes,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 20,

no. 3, pp.355–368, Mar. 2001.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1199

[10]. X. Kavousianos, E. Kalligeros, and D.

Nikolos, “Optimal selective Huffman coding

for test-data compression,” IEEE Trans.

Computers, vol. 56, no. 8, pp. 1146–1152,

Aug. 2007.

[11]. M. Nourani andM. Tehranipour, “RL-

Huffman encoding for test compression and

power reduction in scan applications,” ACM

Trans. Des.Autom. Electron. Syst., vol. 10,

no. 1, pp. 91–115, 2005.

[12]. H. Hashempour, L. Schiano, and F.

Lombardi, “Error-resilient test data

compression using Tunstall codes,” in Proc.

IEEE Int. Symp. Defect Fault Tolerance

VLSI Syst., 2004, pp. 316–323.

[13]. M. Knieser, F.Wolff, C. Papachristou,

D.Weyer, and D. McIntyre, “A technique for

high ratio LZWcompression,” in Proc. Des.,

Autom., Test Eur., 2003, p. 10116.

[14]. M. Tehranipour, M. Nourani, and K.

Chakrabarty, “Nine-coded compression

technique for testing embedded cores in

SOCs,” IEEE Trans.Very Large Scale

Integr. (VLSI) Syst., vol. 13, pp. 719–731,

Jun. 2005.

[15]. L. Lingappan, S. Ravi, A. Raghunathan, N.

K. Jha, and S. T.Chakradhar, “Test volume

reduction in systems-on-a-chip using

heterogeneous and multilevel compression

techniques,” IEEE Trans.Comput.-Aided

Des. Integr. Circuits Syst., vol. 25, no. 10,

pp.2193–2206, Oct. 2006.

[16]. A. Chandra and K. Chakrabarty, “Test data

compression and test resource partitioning

for system-on-a-chip using frequency-

directed run-length (FDR) codes,” IEEE

Trans. Computers, vol. 52, no. 8, pp.1076–

1088, Aug. 2003.

[17]. X. Kavousianos, E. Kalligeros, and D.

Nikolos, “Multilevel-Huffman test-data

compression for IP cores with multiple scan

chains,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 16, no. 7, pp. 926–

931,Jul. 2008.

[18]. X. Kavousianos, E. Kalligeros, and D.

Nikolos, “Multilevel Huffman coding: An

efficient test-data compression method for

IP cores,” IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst., vol. 26, no. 6,

pp.1070–1083, Jun. 2007.

[19]. X. Kavousianos, E. Kalligeros, and D.

Nikolos, “Test data compression based on

variable-to-variable Huffman encoding with

codeword reusability,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits

Syst.,vol. 27, no. 7, pp. 1333–1338, Jul.

2008.

[20]. S. Reda and A. Orailoglu, “Reducing test

application time through test data mutation

encoding,” in Proc. Des. Autom. Test Eur.,

2002, pp.387–393.

[21]. E. Volkerink, A. Khoche, and S. Mitra,

“Packet-based input test data compression

techniques,” in Proc. Int. Test Conf., 2002,

pp. 154–163.

[22]. S. Reddy, K. Miyase, S. Kajihara, and I.

Pomeranz, “On test data volume reduction

for multiple scan chain design,” in Proc.

VLSI Test Symp., 2002, pp. 103–108.

[23]. F. Wolff and C. Papachristou, “Multiscan-

based test compression and hardware

decompression using LZ77,” in Proc. Int.

Test Conf., 2002,pp. 331–339.

[24]. A. Wurtenberger, C. Tautermann, and S.

Hellebrand, “Data compression for multiple

scan chains using dictionaries with

corrections,” in Proc. Int. Test Conf., 2004,

pp. 926–935.

[25]. K. Basu and P.Mishra, “A novel test-data

compression technique using application-

aware bitmask and dictionary selection

methods,” in Proc.ACM Great Lakes Symp.

VLSI, 2008, pp. 83–88.

[26]. T. Cormen, C. Leiserson, R. Rivest, and C.

Stein, Introduction to Algorithms. boston,

MA: MIT Press, 2001.

[27]. M. Garey and D. Johnson, Computers and

Intractability: A Guide to the Theory of NP-

Completeness. New York: Freeman, 1979.

[28]. Hamzaoglu and J. Patel, “Test set

compaction algorithm for combinational

circuits,” in Proc. Int. Conf. Comput.-Aided

Des., 1998, pp.283–289.

