
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1186

Shortest Path Finding Using Spatial Ranking

B.PADMAJA
1
, R.SATEESH

2
, K.DHANASREE

3

Assistant Professor, DJRIET
1, 2

, Associate Professor, DRKIST
3

Abstract
The k nearest neighbor object to a point in space is the most regularly used query in finding shortest path of a given network. In

this paper we present an efficient pruning method to find the nearest neighbor to a point for finding the shortest path. Finally we

present the results of several experiments obtained using the implementation of our algorithm and examine the behavior of the

metrics and scalability of the algorithm.

Keyword: Spatial, Ranking, Nearest Neighbor, Shortest path, MBR, R-Tree.

I. Introduction
The efficient implementation of Nearest Neighbor (NN)

queries is of a particular interest in Geographic Information

System (GIS). In this paper the shortest path in a network is

obtained by finding the nearest neighbor of nearest neighbors.

Efficient processing of NN queries requires spatial

data structure which capitalize on the proximity of the objects

to focus the search of potential neighbors only. Finding the

Nearest Neighbor of Nearest Neighbor has many applications:

I. In mobile environments, users do not have the

accurate knowledge about their locations to specify the query

points because all location identification methods have errors.

Even if they have such knowledge, they may not want to

expose these locations to the service providers for privacy

reasons. RNN queries address these issues by allowing users to

specify ranges rather than points for NN queries. They are

particularly appealing to the large number of 2G/3G mobile

subscribers whose devices are incapable of pinpointing

locations. While these devices cannot support conventional NN

queries, they can issue RNN queries through text messages

such as “find the nearest hotels to the City Park?”

II. A user may continuously ask for nearest neighbors

while moving around. It is inefficient to submit many PNN

queries individually to the server. A better alternative is to

submit a single RNN query around the current location to fetch

all possible nearest neighbors for this area. Any PNN query

issued in this area is then processed locally by a nearest-

neighbor search in the prefetched set, saving both computation

and communication costs

Section 2 of the paper contains the theoretical foundation for

the shortest path finding using nearest neighbor search. Section

3 describes the algorithm for ordering the search and pruning

during it. Section 4 has the experiments with the

implementation of the algorithm.

II. Shortest Path Finding

USING R-TREES

As with Quad Tree the region is divided into successively

smaller rectangles (MBRs). Rectangles need not be of the same

size or number at each level. Rectangles may actually overlap.

Lowest level cell has only one object, Tree maintenance

algorithms similar to those for B-trees.

 Leaf nodes of the R-Tree contain entries of the form

(RECT, oid) where oid is an object identifier and is used as a

pointer to a data object and RECT is an n-dimensional

Minimal Bounding Rectangle (MBR) which bounds the

corresponding object.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1187

Every MBR have 4 corners which are as shown below

Take Two MBR’s from the source node as Bottom

Right corner in both left and right direction as shown in the

following figure Find the nearest neighbor of source in both

left and right MBR’s and find out the distance between left

MBR nearest neighbor and destination node (assumed as 1),

the right MBR nearest neighbor and destination node (assumed

as 2). The smallest value nearest neighbor is changed as the

source, the above procedure repeats until destination is

reached.

When the destination reaches all the set of sources

traversed becomes the shortest path.

 As in the above figure the Left MBR nearest neighbor

to source is node P1 and the Right MBR nearest neighbor to

source is node P3. Take the distance between p1 to destination

as 1(Assume it is 25 units) and the distance between p2 to

destination as 2 (Assume it as 20 units). Since 2 is less than

1 take the Right MBR’s nearest neighbor as source i.e point

p3. Now take the source as p3, take two MBR’s from the

bottom left and bottom right corners and repeat the above

procedure. The list of all nodes taken as sources between the

source node and destination nodes is the shortest path.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1188

Above Figures shows both the Left MBR and Right MBR’s

Nodes.

In Figure 4(a) the root is taken as source node and the

Left sub tree is taken as all the Left MBR nodes, the Right sub

tree is taken as all the Right MBR nodes. The nearest neighbor

to the destination in both the Left sub tree and Right sub tree of

Figure 4(a) is taken as the root for the Figure 4(b). This

procedure is repeated until the nearest neighbor for the root is

Destination. The collection of all the root nodes becomes the

shortest path.

III. Shortest Path Finding Algorithm Using R-Trees
Pseudo code for shortest path finding

Algorithm: Shortestpath_find (Source, LeftMBR, RightMBR,

Set V, Value)

L1: Insert Source as root into Hc //Hc refers Min

 Heap

L2: Nearest Nearest

L3: int dist

L 4: for each left entry e’ of Source do

L 5: if CN is a non-leaf node then

L 6: if Є V, mindist(e’,source) ≤

 then

L 7: dist:=objectDIST(e’,Source)

L 8: if(dist<Nearest.dist) then

L 9: Nearest.dist=dist

L 10: insert e’ into H α //H α refers Min Heap

L 11: else then

L 12: Perform Pruning

L 13: for each right entry e’’ of Source do

L 14: if CN is a non-leaf node then

L 15: if Є V, mindist(e’’,source) ≤

 then
L 16: dist:=objectDIST(e’’,Source)

L 17: if(dist<Nearest.dist) then

L 18: Nearest.dist=dist

L 19: Insert e’’ into Hβ //Hβ refers Min Heap

L 20: else then

L 21: Perform Pruning

L 22: while │v│ >0 and there exists a non-empty

 heap H α do

L 23: deheap an entry e’ from Hα into LNR (Left

 Nearest Neighbor)

L 24: while │v│ >0 and there exists a non-empty eap

 Hβ do

L 25: deheap an entry e’’ from H β into RNR (Right

 Nearest Neighbor)

L26: 1=dist(LNR,destination)

L27: 2=dist(RNR,destination)

L28: if 1< 2 then

L29: Change the source as LNR andCall

 Shortestpath_find (LNR, LeftMBR , RightMBR

 ,Set V,Value)

L30: else then

L31: Change the source as RNR and Call

 Shortestpath_find (RNR, LeftMBR , RightMBR

 ,Set V, Value)

In this paper, we assume that the object dataset is

indexed by an R-tree and each feature dataset is indexed by an

MIN R-tree, where each where each non-leaf entry augments

the minimum quality (of features) in its sub tree.

The above algorithm shows the procedure for finding

the shortest spatial path in networks. In this algorithm the

Lines 1-21 are used to take three Min Heaps are used to store

the Source Node, its Left MBR nodes, its Right MBR nodes

respectively as Hc, H α, H . In H α and H all the nodes of

Left MBR are stored in order of minimum distance from the

source. All the nodes which are not in the Left and Right

MBR’s are pruned.

The functions objectDIST and dist are used to

calculate the Euclidean distance between the source to

destination (or) source to a specific point in MBR. Lines 22-25

shows that the deheap node from H α becomes the nearest

neighbor in its Left MBR (i.e LNR), the deheap node from the

H becomes the nearest neighbor in its Right MBR (i.e RNR)

Lines 26-31 shows that the distance between the

LNR, RNR and Destination node are taken into respectively

1 and 2. If is smaller than then the source is taken as

LNR otherwise the source is taken as RNR for the next

recursive call.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2Issue. 5

Issn 2250-3005(online) September| 2012 Page 1189

IV. Experiment Results
The shortest path is finding by taking two MBR’s as

any one of the corner based upon the direction of destination

from the source. When the destination is below or right to the

source as shown in the following figure (5) the Two MBR’s

are taken as Top Left corner and Top Right corner. If the

destination is above or left to the source then the Two MBR’s

are taken as Bottom Left and Bottom Right corner

Fig (6) shows the results of an experiment using the

data of Fig (4). From the experimental behavior, we can make

two observations. First, in the Traditional system the total

number of neighbors accessed to find the shortest path is at

constant rate of total number of neighbor nodes. That is at any

distance we need to check all the neighbors. Second, in our

proposed system the total number of neighbors accessed to find

the shortest path is at the rate of 20%. In figure 4, traversed

two neighbors in the first 10 units, six neighbor nodes for 20,

30, 40 units, eight neighbor nodes for 50 units, traversed nine

neighbor nodes for 60 and 70 units, 11neighbor nodes for 80

units. That is at a specific distance we need to check the Left

MBR and Right MBR neighbors only, the remaining neighbor

nodes are pruned.

 V. Conclusion
In this paper, we developed a Shortest Path finding

Algorithm which finds the k Nearest Neighbors of a given

source point. We also introduced four corners of MBR that can

be used to guide an ordered spatial search. We implemented

and thoroughly tested our Shortest Path finding algorithm

using k-Nearest Neighbor spatial search. The experiments on

both real data sets showed that the algorithm scales up well

with respect to both the number of NN requested and with size

of data sets.

Further research on shortest path finding using spatial

queries will focus on defining and analyzing other metrics and

characterization of our algorithm in three space environment.

References
[1] Nearest Neighbor Queries by Nick

 Roussopoulos Stephen Kelly Frederic

 Vincent.

[2] Ranking Spatial Data by Quality

 Preferences Man Lung Yiu, Hua Lu,

 Nikos Mamoulis, and Michail Vaitis.

[3] Range Nearest-Neighbor Query Haibo Hu and

 Dik Lun Lee

[4] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis,

 “Top-k Spatial Preference Queries,” in ICDE,

 2007.

[5] N. Bruno, L. Gravano, and A. Marian,

 “Evaluating Top-k Queries over Web-accessible

 Databases,” in ICDE, 2002.

[6] A. Guttman, “R-Trees: A Dynamic Index

 Structure for Spatial Searching,” in SIGMOD,

 1984.

[7] G. R. Hjaltason and H. Samet, “Distance

 Browsing in Spatial Databases,” TODS, vol.

 24(2), pp. 265–318, 1999.

[8] R. Weber, H.-J. Schek, and S. Blott, “A

 quantitative analysis and performance study for

 similarity-search methods in high dimensional

 spaces.” in VLDB, 1998.

