
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1474

Analysis of object Oriented Metrics

1.
 Dr.R.V.Krishnaiah,

2.
BANDA SHIVA PRASAD

Abstract
Now a days Software development plays vital role in the

world. We focus on process improvement has increased

the demand for software measures, or metrics with which

to manage the process. Measurement is fundamental to

any engineering discipline. There is considerable

evidence that object-oriented design metrics can be used

to make quality management decisions. This leads to

substantial cost savings in allocation of resources for

testing or estimation of maintenance effort for a project.

The need for such metrics is particularly acute when an

organization is adopting a new technology for which

established practices have yet to be developed. This

research addresses these needs through the development

and implementation of a suite of metrics for OO design.

The metric values have been calculated using a semi

automated tool. The resulting values have been analyzed

to provide significant insight about the object oriented

characteristics of the projects.

Index Terms
Object Oriented, Design, Development, Metric, Measure,

Coupling, Cohesion, Complexity, Size

Introduction
Object-Oriented Analysis and Design of software provide

many benefits such as reusability, decomposition

of problem into easily understood object and the aiding of

future modifications. But the OOAD software

development life cycle is not easier than the typical

procedural approach. Therefore, it is necessary to

provide dependable guidelines that one may follow to

help ensure good OO programming practices and

write reliable code. Object-Oriented programming metrics

is an aspect to be considered. Metrics to be a set

of standards against which one can measure the

effectiveness of Object-Oriented Analysis techniques in

thedesign of a system.

Five characteristics of Object Oriented Metrics are as

following:

1. Localization operations used in many classes

2. Encapsulation metrics for classes, not modules

3. Information Hiding should be measured & improved

4. Inheritance adds complexity, should be measured

5. Object Abstraction metrics represent level of

abstraction

We can signify nine classes of Object Oriented Metrics.

In each of then an aspect of the software would be

measured:

 Size

 Population (# of classes, operations)

 Volume (dynamic object count)

 Length (e.g., depth of inheritance)

 Functionality (# of user functions)

 Complexity

How classes are interrelated

Coupling, collaborations between classes, number of

method calls, etc.Sufficiency Does a class reflect the

necessary propertiesof the problem domain?Completeness

Does a class reflect all the properties of the problem

domain? (for reuse) CohesionDo the attributes and

operations in a class achieve a single, well-defined

purpose in the problemdomain?Primitiveness (Simplicity)

Degree to which class operations can’t be composed from

other operationsSimilarity Comparison of structure,

function, behavior of two or more classesVolatilityThe

likelihood that a change will occur in the design or

implementation of a class

Metrics
Chidamber and Kemerer's metrics suite for OO Design is

the deepest research in OO metrics investigation.

They have defined six metrics for the OO design.

In this section we’ll have a complete description of their

metrics:

Metric 1: Weighted Methods per Class (WMC)

Definition: Consider a Class C1, with methods M1... Mn

that are defined in the class. Let c1... cn be the

complexity of the methods. Then:

If all method complexities are considered to be unity, then

WMC = n, the number of methods.

Theoretical basis: WMC relates directly to Bunge's1

definition of complexity of a thing, since methods are

properties of object classes and complexity is determined

by the cardinality of its set of properties. The

number of methods is, therefore, a measure of class

definition as well as being attributes of a class, since

attributes correspond to properties.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1475

Viewpoints

• The number of methods and the complexity of methods

involved is a predictor of how much time andeffort is

required to develop and maintain the class.

• The larger the number of methods in a class the greater

the potential impact on children, since children

 will inherit all the methods defined in the class.

• Classes with large numbers of methods are likely to be

more application specific, limiting the possibility

 of reuse.

Metric 2: Depth of Inheritance Tree (DIT)

Definition: Depth of inheritance of the class is the DIT

metric for the class. In cases involving multiple

inheritance, the DIT will be the maximum length from the

node to the root of the tree.

Theoretical basis: DIT relates to Bunge's notion of the

scope of properties. DIT is a measure of how many

ancestor classes can potentially affect this class.

Viewpoints:

• The deeper a class is in the hierarchy, the greater the

 number of methods it is likely to inherit, making it

 more complex to predict its behavior.

• Deeper trees constitute greater design complexity,

 since more methods and classes are involved.

• The deeper a particular class is in the hierarchy, the

greater the potential reuse of inherited methods.

1 The ontological principles proposed by Bunge in his

“Treatise on Basic Philosophy” form the basis of the

concept of objects.

 While Bunge did not provide specific ontological

definitions for object oriented concepts, several recent

researchers have employed

 his generalized concepts to the object oriented domain.

Metric 3: Number of children (NOC)

Definition: NOC = number of immediate sub-classes

subordinated to a class in the class hierarchy.

Theoretical basis: NOC relates to the notion of scope of

properties. It is a measure of how many subclasses

are going to inherit the methods of the parent class.

Viewpoints:

• Greater the number of children, greater the reuse, since

 inheritance is a form of reuse.

• Greater the number of children, the greater the

 likelihood of improper abstraction of the parent class

 . If a

 class has a large number of children, it may be a case

 of misuse of sub-classing.

• The number of children gives an idea of the potential

influence a class has on the design. If a class has a

large number of children, it may require more testing of

the methods in that class.

Metric 4: Coupling between object classes (CBO)

Definition: CBO for a class is a count of the number of

other classes to which it is coupled.

Theoretical basis: CBO relates to the notion that an object

is coupled to another object if one of them acts

on the other, i.e., methods of one use methods or instance

variables of another. As stated earlier, since

objects of the same class have the same properties, two

classes are coupled when methods declared in one

class use methods or instance variables defined by the

other class.

Viewpoints:

• Excessive coupling between object classes is detrimental

 to modular design and prevents reuse. The more

 independent a class is, the easier it is to reuse it in

 another application.

•In order to improve modularity and promote

ncapsulation, inter-object class couples should be kept to

aminimum. The larger the number of couples, the higher

the sensitivity to changes in other parts of the

design, and therefore maintenance is more difficult.

• A measure of coupling is useful to determine how

complex the testings of various parts of a design are

likely to be. The higher the inter-object class coupling, the

more rigorous the testing needs to be.

Metric 5: Response for a Class (RFC)

Definition: RFC = | RS | where RS is the response set for

the class.Theoretical basis: The response set for the class

can be expressed as:RS = { M }È all i { Ri }where { Ri }

= set of methods called by method i and { M } = set of all

methods in the class The responseset of a class is a set of

methods that can potentially be executed in response to a

message received by anobject of that class26. The

cardinality of this set is a measure of the attributes of

objects in the class. Since itspecifically includes methods

called from outside the class, it is also a measure of the

potentialcommunication between the class and other

classes.

Viewpoints:

• If a large number of methods can be invoked in response

 to a message, the testing and debugging of the

 class becomes more complicated since it requires a

 greater level of understanding required on the part of

 the tester.

• The larger the number of methods that can be invoked

 from a class, the greater the complexity of the class.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1476

• A worst case value for possible responses will assist in

appropriate allocation of testing time.

Metric 6: Lack of Cohesion in Methods (LCOM)

Definition: Consider a Class C1 with n methods M1,

M2..., Mn. Let {Ij} = set of instance variables used by

method Mi. There are n such sets {I1},... {In}. Let P = {

(Ii,Ij) | Ii Ç Ij = Æ } and Q = { (Ii,Ij) | Ii Ç Ij _ Æ }.

If all n sets {I1},... {In} are Æ then let P = Æ.

LCOM = |P| - |Q|, if |P| > |Q|

= 0 otherwise28Example: Consider a class C with three

methods M1, M2 and M3. Let {I1} = {a,b,c,d,e} and {I2}

= {a,b,e}and {I3} = {x,y,z}. {I1} Ç {I2} is non-empty,

but {I1} Ç {I3} and {I2} Ç {I3} are null sets. LCOM is

the(number of null-intersections - number of non-empty

intersections), which in this case is 1.Theoretical basis:

This uses the notion of degree of similarity of methods.

The degree of similarity for twomethods M1 and M2 in

class C1 is given by:s() = {I1} Ç {I2} where {I1} and

{I2} are the sets of instance variables used by M1 and M2

The LCOM is a count of the number of method pairs

whose similarity is 0 (i.e. s() is a null set) minus thecount

of method pairs whose similarity is not zero. The larger

the number of similar methods, the morecohesive the

class, which is consistent with traditional notions of

cohesion that measure the interrelatednessbetween

portions of a program. If none of the methods of a class

display any instance behavior,i.e. do not use any instance

variables, they have no similarity and the LCOM value

for the class will be zero.The LCOM value provides a

measure of the relative disparate nature of methods in the

class. A smallernumber of disjoint pairs (elements of set

P) implies greater similarity of methods. LCOM is

intimately tiedto the instance variables and methods of a

class, and therefore is a measure of the attributes of an

objectclass.

Viewpoints:

• Cohesiveness of methods within a class is desirable,

since it promotes encapsulation.

• Lack of cohesion implies classes should probably be

split into two or more sub-classes.

• Any measure of disparateness of methods helps identify

flaws in the design of classes.

• Low cohesion increases complexity, thereby increasing

the likelihood of errors during the development

process.

3. MOOD (Metrics For Object Oriented Design)
The MOOD metrics set refers to a basic structural

mechanism of the OO paradigm as encapsulation (MHF

and AHF), inheritance (MIF and AIF), polymorphisms (

PF) , message-passing (CF) and are expressed

as quotients. The set includes the following metrics:

Method Hiding Factor (MHF)

MHF is defined as the ratio of the sum of the invisibilities

of all methods defined in all classes to the total

number of methods defined in the system under

consideration.The invisibility of a method is the

percentage of the total classes from which this method is

not visible.note : inherited methods not considered.

Attribute Hiding Factor (AHF)

AHF is defined as the ratio of the sum of the invisibilities

of all attributes defined in all classes to the total

number of attributes defined in the system under

consideration.

Method Inheritance Factor (MIF)

MIF is defined as the ratio of the sum of the inherited

methods in all classes of the system under

consideration to the total number of available methods (

locally defined plus inherited) for all classes.

Attribute Inheritance Factor (AIF)

AIF is defined as the ratio of the sum of inherited

attributes in all classes of the system under consideration

to the total number of available attributes (locally defined

plus inherited) for all classes.

Polymorphism Factor (PF)

PF is defined as the ratio of the actual number of possible

different polymorphic situation for class Ci to the

maximum number of possible distinct polymorphic

situations for class Ci.

Coupling Factor (CF)

CF is defined as the ratio of the maximum possible

number of couplings in the system to the actual number

of couplings not imputable to inheritance.

4. Some Traditional Metrics

There are many metrics that are applied to traditional

functional development. The SATC2, from experience,

has identified three of these metrics that are applicable to

object oriented development: Complexity, Size,

and Readability. To measure the complexity, the

cyclomatic complexity is used.

2 Software Assurance Technology Center (SATC) at

NASA Goddard

Space Flight Center

Metric 1: Cyclomatic Complexity (CC)

Cyclomatic complexity (McCabe) is used to evaluate the

complexity of an algorithm in a method. It is a

count of the number of test cases that are needed to test

the method comprehensively. The formula for

calculating the cyclomatic complexity is the number of

edges minus the number of nodes plus 2. For a

sequence where there is only one path, no choices or

option, only one test case is needed. An IF loop

however, has two choices, if the condition is true, one

path is tested; if the condition is false, an alternative

path is tested.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1477

Figure 1 shows a method with a low cyclomatic

complexity is generally better. This may imply decreased

testing and increased understandability or that decisions

are deferred through message passing, not that the

method is not complex. Cyclomatic complexity cannot be

used to measure the complexity of a class

because of inheritance, but the cyclomatic complexity of

individual methods can be combined with other

measures to evaluate the complexity of the class.

Although this metric is specifically applicable to the

evaluation of Complexity, it also is related to all of the

other attributes

The SATC’s approach to identifying a set of object

oriented metrics was to focus on the

primary, critical constructs of object oriented design and

to select metrics that apply to those areas. The suggested

metrics are supported by most literature and some object

oriented tools.

The metrics evaluate the object oriented concepts:

methods, classes, coupling, and inheritance. The metrics

focus on internal object structure that reflects the

complexity of each individual entity and on external

complexity that measures the interactions among entities.

The metrics measure computational complexity that

affects the efficiency of an algorithm and the use of

machine resources, as well as psychological complexity

factors that affect the ability of a programmer to create,

comprehend, modify, and maintain software.

We support the use of three traditional metrics and

present six additional metrics

specifically for object oriented systems. The SATC has

found that there is considerable

disagreement in the field about software quality metrics

for object oriented systems.

Some researchers and practitioners contend traditional

metrics are inappropriate for object oriented systems.

There are valid reasons for applying traditional metrics,

however, if it can be done. The traditional metrics have

been widely used, they are well understood by researchers

and practitioners, and their relationships to software

quality attributes have been validated .

Table 1 presents an overview of the metrics applied by the

SATC for object oriented

systems. The SATC supports the continued use of

traditional metrics, but within the structures and confines

of object oriented systems. The first three metrics in Table

1 are examples of traditional metrics applied to the object

oriented structure of methods instead of functions or

procedures. The next six metrics are specifically for

object oriented systems and the object oriented construct

applicable is indicated.

Object-Oriented Specific Metrics

As discussed, many different metrics have been proposed

for object oriented systems.

The object oriented metrics that were chosen by the

SATC measure principle structures that, if improperly

designed, negatively affect the design and code quality

attributes.

The selected object oriented metrics are primarily applied

to the concepts of classes,

coupling, and inheritance. Preceding each metric, a brief

description of the object oriented structure is given. For

some of the object-oriented metrics discussed here,

multiple definitions are given; researchers and

practitioners have not reached a common definition or

counting methodology. In some cases, the counting

method for a metric is determined by the software

analysis package being used to collect the metrics.

Recall, a class is a template from which objects can be

created. This set of objects shares

a common structure and a common behavior manifested

by the set of methods. A method is an operation upon an

object and is defined in the class declaration. A message

is a request that an object makes of another object to

perform an operation. The operation executed as a result

of receiving a message is called a method. Cohesion is the

degree to which methods within a class are related to one

another and work together to provide well-bounded

behavior. Effective object oriented designs maximize

cohesion because cohesion promotes encapsulation.

Coupling is a measure of the strength of association

established by a connection from one entity to another.

Classes (objects) are coupled when a message is passed

between objects; when methods declared in one class use

methods or attributes of another class. Inheritance is the

hierarchical relationship among classes that enables

programmers to reuse previously defined objects

including variables and operators. [2, 3, 5, 8]

METRIC: Depth of Inheritance Tree (DIT)

The depth of a class within the inheritance hierarchy is the

maximum number of steps

from the class node to the root of the tree and is measured

by the number of ancestor classes.

The deeper a class is within the hierarchy, the greater the

number methods it is likely to inherit making it more

complex to predict its behavior. Deeper trees constitute

greater design complexity, since more methods and

classes are involved, but the greater the potential for reuse

of inherited methods.

For many of the metrics, it is more effective to analyze

the modules using two metrics.

In Figure 12 the methods are plotted based on size and

complexity. The SATC has done

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1478

extensive applied research to identify the preferred values.

The “risk regions” shown indicate where methods have

the potential for poor quality that will effect maintain

ability, reusability and readability. (These regions of risk

were developed for non object oriented code and are

expected to decrease in size with further research.) The

table below the graph summarizes the diagram.

SUMMARY

Object oriented metrics help evaluate the development

and testing efforts needed, the

understandability, maintainability and reusability. This

information is summarized in Table 4.

Existing work:

Structural metrics are calculated from the source code

such as references and data sharing between methods of

a class belong together for cohesion.

1. It define and measure relationships among the methods

of a class based on the number of pairs of methods that

share instance or class variables one way or another for

cohesion.

Disadvantage

 Lacking of high cohesion

Proposed System:

1. In proposed System unstructural information is

retrieved from the source code like comments and

identifiers.
2. Information is retrieved from the source code using

Latent Semantic Indexing.

3. With the help of C3 and existing metrics we are

achieving the high cohesion and low coupling.

Advantage

 We can predict the fault prediction using high cohesion

Approaches

 Retrieving the structured information.

 Check the availability of structured information foryour

source code.

 Apply the LCOM5 formula for structured information.

 Analyze about the comments i.e. unstructured

information.

 Index Searching

 Apply the Conceptual similarity formula.

 Comparison

Approach-1:

In this Approachwe are going to take the structured

information like identifiers, (Example Variables).

Invocation of declared methods and declared constructors.

Here the Java program should be well compiled and it

should be valid comments.

Approach-2:

In this Approachdeals we are going to search the declared

variables among all the classes. Because the main theme

of the declaring class variable is, it should be used in all

methods. So that the declared variables are found among

all the methods.

Approach-3:

In this Approachwe are going to apply the LCOM5 (Lack

of cohesion in methods) formula. If the result is equal to

one means, the class is less cohesive according to the

structured information.

Approach-4:

Here we are going to retrieve the index terms based on

that comments which are present in all the methods.

Comments are useful information according to the

software engineer. In concept oriented analysis we are

taking the comments. Based on the comments we are

going to measure the class is cohesive or not.

Approach-5:

 In this Approachwe are going to check the index terms

among the comments which are present in all the

comments.

Approach-6:

In this Approachwe are going to apply the conceptual

similarity formula. Based on the result we can say the

class is cohesive or less cohesive according to concept

oriented.

Approach-7:

In this Approachwe are going to compare the

two results. Based on the results we can say that cohesion

according to structure oriented and unstructured oriented.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1479

Conclusion
We conclude that the Object oriented metrics exist and

do provide valuable information to object oriented

developers and project managers. The SATC has found

that a combination of “traditional” metrics and metrics

that measure structures unique to object oriented

development is most effective. This allows developers to

continue to apply metrics that they are familiar with, such

as complexity and lines of code to a new development

environment. However, now that new concepts and

structures are being applied, such inheritance, coupling,

cohesion, methods and classes, metrics are needed to

evaluate the effectiveness of their application. Metrics

such as Weighted Methods per Class, Response for a

Class, and Lack of Cohesion are applied to these areas.

The application of a hierarchical structure also needs to be

evaluated through metrics such as Depth in Tree and

Number of Children. At this time there are no clear

interpretation guidelines for these metrics although there

are guidelines based on common sense and experience.

References
1. Booch, Grady, Object Oriented Analysis and Design with

Applications, The

 Benjamin/Cummings Publishing Company, Inc., 1994.

2. Chidamber, Shyam and Kemerer, Chris, “A Metrics Suite

for Object Oriented Design”, IEEE

 Transactions on Software Engineering, June, 1994, pp.

476-492.

3. Hudli, R., Hoskins, C., Hudli, A., “Software Metrics for

Object Oriented Designs”, IEEE,

 1994.

4. acobson, Ivar, Object Oriented Software Engineering, A

Use Case Driven Approach,

 Addison-Wesley Publishing Company, 1993.

5. Lee, Y., Liang, B., Wang, F., “Some Complexity Metrics

for Object Oriented Programs

 Based on Information Flow”, Proceedings: CompEuro,

March, 1993, pp.

6. Lorenz, Mark and Kidd, Jeff, Object Oriented Software

Metrics, Prentice Hall Publishing,

 1994.

7. McCabe & Associates, McCabe Object Oriented Tool

User’s Instructions, 1994.

8. Rosenberg, Linda H., “Metrics for Object Oriented

Environments”, EFAITP/AIE Third

 Annual Software Metrics Conference, December, 97.

9. Sommerville, Ian, Software Engineering, Addison-Wesley

Publishing Company, 1992.

10. Sharble, Robert, and Cohen, Samuel, “The Object

Oriented Brewery: A Comparison of Twoobject oriented

Development Methods”, Software Engineering Notes,

Vol 18, No 2., April1993, pp 60 -73.

AUOTHERS PROFILES:

1.Dr.R.V.Krishnaiah

M.Tech(EIE),M.Tech(CSE), PhD,MIE,MIETE,MISTE

Principal,

DRK INSTITUTE OF SCINCE & TECHNOLOGY,

Hyderabad.

BANDA SHIVA PRASAD

M.TECH -CSE

DRK INSTITUTE OF SCINCE & TECHNOLOGY,

Hyderabad.

