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Abstract  
Cloud data storage redefines the issues targeted on customer’s 

out-sourced data (data that is not stored/retrieved from the 
customers own servers). In this work we observed that, from a 

customer’s point of view, the data need to be accessed with in 

no time the user given the request ,Even though the data is 

stored on cloud severs the effective query optimizations may 

not be defined to access the data in an efficient way. This paper 

proposes the efficient available Query optimization techniques 

for efficient retrieval of data to satisfy the customer needs. 

Keywords:  Cloud computing, storage, Cloud service 

provider, Query Optimization. 

 

Introduction 
The industrial information technology towards a subscription 

based or pay-per-use service business model known as cloud 

computing. This paradigm provides users with a long list of 
advantages, such as provision computing capabilities; broad, 

heterogeneous network access; resource pooling and rapid elas-

ticity with measured services .Huge amounts of data being 

retrieved from geographically distributed data sources, and 

non-localized data-handling requirements, creates such a 

change in technological as well as business model. One of the 

prominent services offered in cloud computing is the cloud 

data storage, in which, subscribers do not have to store their 

own data on their servers, where instead their data will be 

stored on the cloud service provider’s servers. In cloud 

computing, subscribers have to pay the providers  for this 

storage service. This service does not only provides flexibility 
and scalability data storage, it also provides customers with the 

benefit of paying only for the amount of data they needs to 

store for a particular period of time, without any concerns of 

efficient storage mechanisms and maintainability issues with 

large amounts of data storage[3]. In addition to these benefits, 

customers can easily access their data from any geographical 

region where the Cloud Service Provider’s network or Internet 

can be accessed [1]. An example of the cloud computing is 

shown in Fig. 1. Since cloud service providers (SP ) are 

separate market entities, data integrity and privacy and retrieval 

are the most critical issues that need to be addressed in cloud 
computing. Even though the cloud service providers have 

standard regulations and powerful infrastructure to ensure  

 

 

 

 

 

 
 

 

Customer’s data privacy, data retrieval and provide a better 

availability [5], the reports of privacy breach and service 
outage have been apparent in last few years  

 

 

              

 
       Fig. 1.    Cloud computing architecture example 

 

In this work we observed that, from a customer’s point of 

view, relying upon data retrieving which he needs by 

performing an effective query optimization In addition,  

providing reliability ,availability are crucial and equally 

important to query optimization. Query Optimization can  be 

achieved by implementing the optimization techniques for 

effective retrieval of data. 

 
To address optimization issues in this paper, we proposed the 

techniques for optimizing the queries to provide customers 

with fast data retreival [2]. In our model,  

Query processing: A 3-step process that transforms a high-

level query (of relationa lcalculus/SQL) into an equivalent and 

more efficient  lower-level query (of  relational algebra). 

1. Parsing and translation 

– Check syntax and verify relations. 

– Translate the query into an equivalent relational algebra 

expression. 

2. Optimization 

– Generate an optimal evaluation plan (with lowest cost) for 
the query plan. 

3. Evaluation 

– The query-execution engine takes an  (optimal) evaluation 

plan, executes that plan and returns the answers to the query. 
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The success of storage is due, in part  to the availability 

– of declarative query languages that allow to easily express 
complex queries without knowing about the details of the 

physical data organization and  of  advanced query processing 

technology that transforms the high-level user/application 

queries into efficient lower-level query execution strategies. 

The query transformation should achieve both correctness and 

efficiency 

– The main difficulty is to achieve the efficiency 

– This is also one of the most important tasks of any distributed 

system 

• Cloud storage system query processing: Transform a high-

level query (of relational calculus/SQL) on a stored database 
(i.e., a set of global relations) into an equivalent and efficient 

lower-level query (of relational algebra) on relation fragments. 

• Cloud storage system query processing is more complex 

– Fragmentation/replication of relations 

– Additional communication costs 

– Parallel execution  

Example: Transformation of an SQL-query into an RA-query. 

Relations: EMP(ENO, ENAME, TITLE), 

ASG(ENO,PNO,RESP,DUR) 

Query: Find the names of employees who are managing a 

project? 

– High level query 
SELECT ENAME FROM EMP,ASG 

WHERE EMP.ENO = ASG.ENO AND DUR > 37 

– Two possible transformations of the query are: 

_ Expression 1: 

_ENAME(_DUR>37∧ EMP.ENO=ASG.ENO(EMP × ASG)) 

_ Expression 2: _ENAME(EMP ⋊⋉ENO (_DUR>37(ASG))) 

– Expression 2 avoids the expensive and large intermediate 

Cartesian product, and therefore typically is better. 

 

We make the following assumptions about the data 
fragmentation[8] 

– Data is (horizontally) fragmented and distributed 

_ Site1: ASG1 = _ENO≤”E3”(ASG) 

_ Site2: ASG2 = _ENO>”E3”(ASG) 

_ Site3: EMP1 = _ENO≤”E3”(EMP) 

_ Site4: EMP2 = _ENO>”E3”(EMP) 

_ Site5: Result 

– Relations ASG and EMP are fragmented and distributed  in 

the same way 
– Relations ASG and EMP are locally clustered on attributes 

RESP and ENO respectively 

Now consider the expression _ENAME(EMP ⋊⋉ENO 

(_DUR>37(ASG))) 

• Strategy 1 (partially parallel execution)[2]: 

– Produce ASG′1 and move to Site 3 

– Produce ASG′ 2 and move to Site 4 

– Join ASG′ 1 with EMP1 at Site 3 and move the result to 

   Site 5 

– Join ASG′ 2 with EMP2 at Site 4 and move the result to 

   Site 5 
– Union the result in Site 5 

• Strategy 2: 

– Move ASG1 and ASG2 to Site 5 

– Move EMP1 and EMP2 to Site 5 

– Select and  join at Site 5 

• For simplicity, the final projection is omitted. 

 

 
 

Calculating  the cost of the two strategies under the following 

assumptions: 
– Tuples are uniformly distributed to the fragments; 20 tuples 

satisfy DUR>37 

– size(EMP) = 400, size(ASG) = 1000 

– tuple access cost = 1 unit; tuple transfer cost = 10 units 

– ASG and EMP have a local index on DUR and ENO 

 

• Strategy 1: 

 

– Produce ASG’s: (10+10) * tuple access cost            20 

– Transfer ASG’s to the sites of EMPs: (10+10) 

 * tuple transfer cost                                                     200                                                                        
– Produce EMP’s: (10+10) * tuple access cost * 2       40 

– Transfer EMP’s to result site: (10+10) * tuple transfer cost         

                                                                         200 
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– Total cost                                                                    460 

 

• Strategy 2: 

 

– Transfer EMP1, EMP2 to site 5: 400 * tuple transfer cost 
                                                                    4,000                            

– Transfer ASG1, ASG2 to site 5: 1000 * tuple transfer cost       

              10,000 

– Select tuples from ASG1 [ ASG2: 1000 * tuple access cost   

                1,000  

– Join EMP and ASG’: 400 * 20 * tuple access cost 8,000 

– Total cost                                                                23,000 

 

Query optimization is a crucial and difficult part of the overall 

query processing[2] 

• Objective of query optimization is to minimize the following 

cost function: I/O cost + CPU cost + communication cost 
• Two different scenarios are considered: 

– Wide area networks 

    Communication cost dominates 

    low bandwidth 

    low speed 

    high protocol overhead 

   Most algorithms ignore all other cost components 

– Local area networks 

     Communication cost not that dominant 

     Total cost function should be considered 

Ordering of the operators of relational algebra is crucial for 
efficient query processing 

• Rule of thumb: move expensive operators at the end of query 

processing 

• Cost of RA operations: 

 

Operation Complexity 

Select, Project 

(withoutduplicate elimination) 

O(n) 

Project (with duplicate 

elimination) 

O(n log n) 

 

Group ,Join,Semi-join  

Division,Set Operators 

 

O(n log n) 

Cartesian Product O(n2) 

 

Query Optimization Issues[2] 

Several issues have to be considered in query optimization 
• Types of query optimizers 

    – Wrt the search techniques (exhaustive search, heuristics) 

    – Wrt the time when the query is optimized (static, dynamic) 

• Statistics 

• Decision sites 

• Network topology 

• Use of semi joins 

 

 

 

Types of Query Optimizers wrt Search Techniques[2] 

– Exhaustive search 

    Cost-based 

    Optimal 

    Combinatorial complexity in the number of relations 
– Heuristics 

    Not optimal 

    Regroups common sub-expressions 

    Performs selection, projection first 

    Replaces a join by a series of semijoins 

Reorders operations to reduce intermediate relation size              

Optimizes individual operations 

 

Types of Query Optimizers wrt Optimization Timing 

– Static 

     Query is optimized prior to the execution 

      As a consequence it is difficult to estimate the size of the     
intermediate results 

    Typically amortizes over many executions 

– Dynamic 

      Optimization is done at run time 

      Provides exact information on the intermediate relation 

sizes 

      Have to re-optimize for multiple executions 

– Hybrid 

     First, the query is compiled using a static algorithm 

     Then, if the error in estimate sizes greater than threshold,     

the query is re-optimized at run time. 
 

Statistics 

– Relation/fragments 

     Cardinality 

     Size of a tuple 

      Fraction of tuples participating in a join with another 

relation/fragment 

– Attribute 

    Cardinality of domain 

    Actual number of distinct values 

    Distribution of attribute values (e.g., histograms) 
– Common assumptions 

     Independence between different attribute values 

     Uniform distribution of attribute values within their domain 

 

Decision sites 

– Centralized 

      Single site determines the ”best” schedule 

      Simple 

      Knowledge about the entire distributed database is needed 

– Distributed 

     Cooperation among sites to determine the schedule 

     Only local information is needed 
     Cooperation comes with an overhead cost 

– Hybrid 

     One site determines the global schedule 

     Each site optimizes the local sub-queries 
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Network topology 

– Wide area networks (WAN) point-to-point 

    Characteristics 

       · Low bandwidth 

       · Low speed 
       · High protocol overhead 

     Communication cost dominate; all other cost factors are 

ignored 

     Global schedule to minimize communication cost 

      Local schedules according to centralized query 

optimization 

– Local area networks (LAN) 

      Communication cost not that dominant 

      Total cost function should be considered 

      Broadcasting can be exploited (joins) 

      Special algorithms exist for star networks 

 

Use of Semi joins[2] 

     Reduce the size of the join operands by first computing 

semijoins 

     Particularly relevant when the main cost is the 

communication cost 

     Improves the processing of distributed join operations by 

reducing the size of data 

exchange between sites 

     However, the number of messages as well as local 

processing time is increased 

 

 
      

Query processing transforms a high level query (relational 

calculus) into an equivalent lower level query (relational 

algebra). The main difficulty is to achieve the efficiency in the 

transformation 
 

• Query optimization aims to minimize the cost function: 

     I/O cost + CPU cost + communication cost 

• Query optimizers vary by search type (exhaustive search, 

heuristics) and by type of the 

algorithm (dynamic, static, hybrid). Different statistics are 

collected to support the query 

optimization process 
• Query optimizers vary by decision sites (centralized, 

distributed, hybrid) 

• Query processing is done in the following sequence: query 

decomposition data localization global optimization  local 

optimization. 
 

Conclusion 
In this paper, we proposed a various issues related to the Query 

Optimization  in cloud computing, which seeks to provide each 

customer with better data retrieval from cloud data storage. 
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