
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1137

Algorithm for Merging Search Interfaces over Hidden Web

Harish Saini
1
, Kirti Nagpal

2

1
Assistant Professor N.C.College of Engineering Israna, Panipat
2
Research Scholar, N.C.College of Engineering Israna, Panipat

Abstract: This is the world of information. The size of

world wide web [4,5] is growing at an exponential rate day

by day. The information on the web is accessed through

search engine. These search engines [8] uses web crawlers to

prepare the repository and update that index at an regular

interval. These web crawlers [3, 6] are the heart of search

engines. Web crawlers continuously keep on crawling the web

and find any new web pages that have been added to the web,

pages that have been removed from the web and reflect all

these changes in the repository of the search engine so that the

search engines produce the most up to date results.

Keywords: Hidden Web, Web Crawler, Ranking, Merging

I. INTRODUCTION
This is the world of information. The size of world wide web

[4,5] is growing at an exponential rate day by day. The

information on the web is accessed through search engine.

These search engines [8] uses web crawlers to prepare the

repository and update that index at an regular interval. Web

crawlers continuously keep on crawling the web and find any

new web pages that have been added to the web, pages that

have been removed from the web and reflect all these changes

in the repository of the search engine so that the search

engines produce the most up to date results. There is some

data on the web that is hidden behind some query interfaces

and that data can’t be accessed by these search engines. These

kind of data is called hidden web [41] or deep web. These

days the contents on the hidden web are of higher interests to

the users because the contents of hidden web are of higher

quality and greater relevance. The contents on hidden web can

be accessed by filling some search forms which are also

called sometimes search interfaces. Search interfaces [37] are

the entry points to the hidden web and make it possible to

access the contents on the hidden web. These search

interfaces are simply like filling any forms like forms for

creating e-mail ids etc. Each search interface has number of

input controls like text boxes, selection lists, radio buttons etc..

To access hidden web one needs to fill these search interfaces

for which a crawler is required which finds for forms on the

web known as form crawler. There can be multiple search

interfaces for the same information domain on the web. In that

case all those search interfaces are required to be merged or

integrated so that crawler[3] finds all data relevant to the user

input despite of existence of multiple search interfaces for the

same domain. Hidden web crawler is the crawler which

continuously crawls hidden web so that it could be indexed by

search engines. The major functions which are to be

performed by hidden web crawler are getting form filled,

finding search query, submitting query and indexing the

results. The challenge of the hidden web crawlers are the huge

and dynamic nature of the hidden web. The merging[46] or

integration of search interfaces over hidden web is required to

response queries so that it answers queries at its best. For the

integration of search interfaces over hidden web two steps are

required

 Finding semantic mapping over the different search

interfaces to be merged.

 Merging search interfaces on the basis of semantic

mappings found earlier.

A Ranking the Web Pages by Search Engine

Search for anything using our favorite crawler-based search

engine will sort through the millions of pages it knows about

and present you with ones that match your topic. The matches

will even be ranked, so that the most relevant ones come first.

Of course, the search engines don't always get it right. So,

how do crawler-based search engines go about determining

relevancy, when confronted with hundreds of millions of web

pages to sort through? They follow a set of rules, known as an

algorithm. Exactly how a particular search engine's algorithm

works is a closely kept trade secret.

One of the main rules in a ranking algorithm involves the

location and frequency of keywords on a web page. Call it the

location/frequency method. Pages with the search terms

appearing in the HTML title tag are often assumed to be more

relevant than others to the topic. Search engines will also

check to see if the search keywords appear near the top of a

web page, such as in the headline or in the first few

paragraphs of text. They assume that any page relevant to the

topic will mention those words right from the beginning.

Frequency is the other major factor in how search engines

determine relevancy. A search engine will analyze how often

keywords appear in relation to other words in a web page.

Those with a higher frequency are often deemed more

relevant than other web pages.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1138

B. Web Crawler

A crawler [14,20] is a program that are typically programmed

to visit sites that have been submitted by their owners as new

or updated. The contents of the Entire sites or specific pages

is selectively visited and indexed. The key reason of using

web crawlers is to visit web pages and add them to the

repository so that a database can be prepared which in turn

serves applications like search engines.

Crawlers use graph structure of the web to move from pages

to pages. The simplest architecture of web crawler is to start

from a seed web page and traverse all hyperlinks encountered

in this web pages then all encountered hyperlinks are added to

the queue which in turn are traversed. The process is repeated

until a sufficient number of pages are identified...

The main goal of the web crawler is to keep the coverage and

freshness of the search engine index as high as possible which

is not informed by user interaction. For this task the crawler

and other parts of the search engine have no communication

between them. Because web is a purely dynamic collection of

web pages there is a need for crawling cycles frequently to

refresh the web repository so that all new pages that have

been added to the web are included in the repository similarly

the web pages that have been removed from web are deleted

from web repository

C Hidden Web Crawler

Current day crawlers crawls only publicly indexable web

(PIW) i.e set of pages which are accessible by following

hyperlinks ignoring search pages and forms which require

authorization or prior registration. In reality they may ignore

huge amount of high quality data which is hidden behind

search forms. Pages in hidden web are dynamically generated

in response to the queries submitted via search forms.

Crawling the hidden web is highly challenging task because

of scale and the need for crawlers to handle search interfaces

designed primarily for human beings. The other challenges of

hidden web data are:

 Ordinary web crawlers can’t be used for hidden web

 The data in hidden web can be accessed only through

a search interface

 Usually the underlying structure of the database is

unknown.

The size of hidden web is continuously increasing as more

and more organizations are putting their high quality data

online hidden behind search forms. Because there are no static

links to hidden web pages therefore search engines can’t

discover and index these web pages.

Because the only entry point to hidden web is search interface

the main challenge is how to generate meaningful queries to

issue to the site. Hidden web crawler is the one which

automatically crawls hidden web so that it can be indexed by

search engines. Hidden web crawler is able to allow an

average use to explore the amount of information, which is

mostly hidden behind search interfaces. The other motive for

hidden web crawler is to make hidden web pages searchable

at a central location so that the significant amount of time and

effort wasted in searching the hidden web can be reduced.

One more motive for hidden web crawlers is that due to heavy

reliance of web users on search engines for locating

information, search engine influence how the users perceive

the web..

There are two core challenges while implementing an

effective hidden web crawler

 The crawler has to be able to understand and model a

query interface.

 The crawler has to come up with meaningful queries

to issue to the query interface.

The first of the two challenges was addressed by a method for

learning search interfaces. For the latter challenge if the

search interface is able to list all possible values for a query

with help of some selection list or drop down list in that case

solution is straight forward. possible so all of the possible

queries can’t be exhaustively listed.

D Search Interfaces

While accessing hidden web [49] search query is submitted to

the search interface of the hidden web crawler. The selection

of web pages and the relevance of results produced from

hidden web is determined by the effectiveness of search

interfaces [42,43]. The different actions performed by search

interfaces are getting input from user, selection of query,

submitting query to the hidden web and merging of results

produced by hidden web crawlers.

The most important activity of search interface is selection of

query which may be implemented in variety of ways. One

method is random method in which random keywords are

selected from the English dictionary and are submitted to the

database. Random approach generates a reasonable number of

relevant pages. The other technique is using generic frequency.

In this method we find a document and obtain general

distribution frequency of each word in the document. Based

on this frequency distribution we find the most frequent

keyword, issue it to the hidden web database and retrieve the

result. The same process is repeated with the second most

frequent word and so on till the downloaded resources are

exhausted. After that it analyses the returned web pages that

whether they contain results or not. Another method is

adaptive in this method the documents returned from the

previous queries issued to the Hidden-Web database is

analysed and it is estimated which keyword is most likely to

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1139

return the most documents. Based on this analysis, the process

is repeated with the most promising queries.

E Problems in Integration of Hidden Web

Recently keen interest has been developed in the retrieval and

integration of hidden web with the intention of having high

quality data for the databases. As the size of information in

hidden web is growing, search forms or search interfaces are

needed to be located which serves as an entry point to hidden

web database. But there exists crawlers which focus search on

specific database domains and retrieve invariable diversified

set of forms like login form, quote request forms and

searchable forms from multiple domains. The process of

grouping these search interfaces or search forms over the

same database domain is called integration of search

interfaces.

These search form are input to algorithm which finds

correspondences among attributes of different forms. This

task is not so easy because of dynamic nature of the web the

new information is added to web and new information is

being modified or even removed. Therefore a scalable

solution suitable for large scale integration is required for the

purpose of large scale integration. In addition in a well

defined domain there may be variation in both structure and

vocabulary of search forms. So in order to obtain information

that covers the whole domain it is required to find

correspondences among attributes of forms and for that a

broad search is needed to be performed.

For this either full crawl is needed to be performed but this is

really inefficient approach as it can take weeks for the

exhaustive crawling process. Another alternative can be focus

crawling in which only pages relevant to a specific topic are

crawled. This has a better quality index as compared to

exhaustive crawling. In this case focused crawler that focus

solely on the contents of retrieved web pages may not be a

very good alternative also because forms are sparsely

distributed and thus the number of forms retrieved per total

number of pages retrieved may be very low. For tackling this

problem a focused crawler has been developed which used

reinforcement learning to build a focus crawler that is

effective for sparse concepts.

The kind of web crawler which crawl web pages

which contain search forms are called form crawlers. Since

form crawler find thousand of forms for the same domain.

Those different forms even for the same domain may be

different in the structure and vocabulary they use. For that

semantic mappings are required to be found among all

attributes of those forms and after finding semantic mappings

those are integrated so that queries involving that domain can

be answered suppressing the existence of multiple search

forms using different structures and vocabulary. There exist

multiple integration techniques which integrates these search

forms over the hidden web. Most of those are semiautomatic.

 F. Need For Merging Search Interfaces

It seems that there will always be more then one search

interfaces even for the same domain. Therefore,

coordination(i.e. mapping, alignment, merging) of search

interfaces is a major challenge for bridging the gaps between

agents with different conceptualizations.

Two approaches are possible:

 (1) merging the search interfaces to create a single coherent

search interface

 (2) aligning the search interfaces by establishing links

between them and allowing them to reuse information from

one another.

Here we propose a new method for search interface merging.

Whenever multiple search forms are to be integrated the task

can be divided into two major steps

 Finding semantic mapping among search forms or

interfaces

 Merging search interfaces on the basis of mapping

The first step in merging [46] of search forms or interfaces

are finding semantic mapping and correspondences among

attributes of those forms so that on the basis of that mapping

search interfaces or forms could be merged. This semantic

mapping serves as the domain specific knowledge base for the

process of merging [47] of search interfaces. The proposed

algorithm is semi automatic. It finds similar terms from a

look-up table which stores all similar terms in the different

search interfaces to be merged along with the relationship

between those similar terms so that it may be decided which

term will be appearing in the merged search interface. The

algorithm makes use of search interfaces in form of a

taxonomy tree to cluster the concepts in the search interfaces

on the basis of level

II Merging of Search Interfaces
More and more applications are in need to utilize multiple

heterogeneous search interfaces across various domains. To

facilitate such applications it is urgent to reuse and

interoperate heterogeneous search interfaces. Both merge and

integration produces a static search interface based on the

existing search interfaces. The resulting search interface is

relatively hard to evolve with the change of existing search

interfaces.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1140

The search interface merge module takes source

search interfaces as input and a table that lists all similar terms

coming from different search interfaces along with the

relationship between those similar terms. The similar terms

can have relationship like meronym, hyper name and

synonym. The search interface merge process is divided into

several steps.
Step 1. Find set of similar terms

Step 2. Children of similar terms are merged and point to the

same parent.

A Merging Observations and Results

Let us consider two source search interfaces and apply the

above stated algorithm to merge those search interfaces as a

case study. The source search interfaces under consideration

are given along with the domain specific knowledge base.

Table 1.1 Domain specific knowledge base

Concept Concept Relation

Optical_drive OpticalDisk Synonym

HardDrive HardDisk Synonym

DVD DVD-Rom Synonym

CDRW CD-RW Synonym

CDRom CD-ROM Synonym

Computer Personal Computer Synonym

The taxonomy trees of search interfaces A and B respectively are as following

Fig1.1TaxonomytreeforSearchInterfaceS1

The codes assigned to the terms in the source search interface

are as follows. Let us consider search interface a first and see

the codes assigned

Table 1.2 Codes of terms in search interface A

Term Code

Recurso A

CPU A01

Hard Disk A02

Personal computer A03

Memory A04

Architecture A05

Optical disk A06

Operating System A07

IBM A0101

Intel A0102

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1141

AMD A0103

X86 A0501

MAC A0502

Sunsparc A0503

DVD-Rom A0601

CD-RW A0602

CD-Rom A0603

Macos A0701

Solaris A0702

Windows A0703

Unix A0704

PowerPC A010101

Celeron A010201

PIV A010202

PIII A010203

PM A010204

Xeon A010205

Pentium_D A010206

Itanium A010207

Opetron A010301

Duron A010302

Athlen 64 A010303

Athlen 32 A010304

Semaron A010305

Linux A070401

Fig 1.2 Taxonomy tree for Search Interface S2

Similarly the second search interface O2 under consideration

becomes as follows

Table 1.3 Codes of terms in search interface B

Term Code

Recurso B

Computer part B01

Computer B02

Modem B0101

Optical_drive B0102

CPU B0103

Memory B0104

Hard Drive B0105

Monitor B0106

Printer B0107

Cable Modem B010101

Internal 56K B010102

DVD B010201

DVD RW B010202

Combo-drive B010203

CDRW B010204

CDROM B010205

Intel B010301

Amd B010302

RAM B010401

Rpm5400 B010501

Rpm7200 B010502

CRT B010601

LCD B010602

Laser B010701

Inkjet B010702

Dotmatrix B010703

Thermal B010704

Pentium B01030101

Celeron B01030102

Sdram B01040101

DDRam B01040102

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1142

Now depending upon the length of codes assigned to each

term search interface can be divided into clusters so that all

terms having codes of same length reside in the same cluster.

The methodology used for clustering has been defined earlier.

The clusters becomes as follows for each search interface.

The algorithm suggested above makes use of recursive calls

so that all children of the terms under consideration are also

checked for the similarity. We take example of term Intel in

search interface o1 and the same term Intel in search interface

O2. Then we try to combine the children of both terms. This

term has been selected for the purpose of clarity and

simplicity only so that it doesn’t become too complex.

Level 0 Level 1

 Level 0 Level 1

 Level 2

 Level 3

Level 2 Level 3

Fig 1.3 Clusters for Search Interface S1

To see how the process of merging of search interfaces will

take place we consider example of term CPU which appears

in both search interfaces. The process of merging will be

followed as per the algorithm suggested above.First of all

both search interfaces O1 and O2 will be passed to function

Integrate. The two tables table 1 and table 2 are already

available with us as given above. While scanning through

these tables as given in the algorithm it will be detected that

cpu appearing in table 1 is same as cpu appearing in table 2

and whenever two same or similar terms are encountered the

codes of both terms are fetched. From tables the fetched codes

of both terms in different search interfaces are A01 and

B0103 in search interface 1 and 2 respectively. These two

codes A01 and B0103 will be passed to function merge.

Function merge will make two queues from these two codes

one for each code having all its descendants upto any level.

So that those queues can be passed to function combine and

queues can be merged. In function merge q1 and q2 will be

created having code A01 and B0103 in q1 and q2 respectively.

The color will be assigned to each term in the queue just to

check whether immediate children of the term have been

added to the queue or not. Initially term will be of white color

and the color will be changed to black when its children has

been added to the queue. The process will be repeated until all

terms in the queue are black which represents that children of

each term has been added to the queue.

 Level 0

A01, A02,

A03, A04,

A05, A06,

A07

A

A0101,A0102

,A0103,A050

1,A0502,A05

03,A0601,A0

602,A0603,A

0701,A0702,

A0703,A0704

A010101,A0102

01,A010202,A0

10203,A010204,

A010205,A0102

06,A010207,A0

10301,A010302,

A010303,A0103

04,A010305,A0

70401

B
B01

B02

B0101,B0102,

B0103,B0104,

B0105,B0106,

B0107

B010101,B0101

02,B010201,B0

10202,B010203,

B010204,B0102

05,B010301,B0

10302,B010404,

B010505,B0105

02,B010601,B0

10602,B010701,

B010702,B0107

03,B010704,

B01030101,B01030102

B01040101,B01040102

Level 4

Fig 1.4Clusters for Search Interface S2

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1143

Fig 1.5 Taxonomy tree for Search Interface after merging S1 and S2

This way merging process proceeds in the algorithm. The same process will be repeated for any term in the search interface.

And after merging two search interfaces result will be stored in form of a queue only. The result obtained after merging the two

search interfaces above the resulting search interface becomes as follows. The case study has shown that how the proposed

algorithm is implemented for merging search interfaces. It is seen from the Fig 3.6 that all similar terms appear only once in the

resulting search interface and none of the concept is left. The same algorithm can be implemented for merging more than two

search interfaces.

REFERENCES
[1] Brian Pinkerton, “Finding what people want:

Experiences with the web crawler.” Proceedings Of

WWW conf., 1994.

[2] Alexandros Ntoulas, Junghoo Cho, Christopher Olston

"What's New on the Web? The Evolution of the Web

from a Search Engine Perspective." In Proceedings of

the World-Wide Web Conference (WWW), May 2004.

[3] Vladislav Shkapenyuk and Torsten Suel, “Design and

Implementation of a High performance Distributed Web

Crawler”, Technical Report, Department of Computer

and Information Science, Polytechnic University,

Brooklyn, July 2001.

[4] Junghoo Cho, Narayanan Shivakumar, Hector Garcia-

Molina "Finding replicated Web collections." In

Proceedings of 2000 ACM International Conference on

Management of Data (SIGMOD), May 2000.

[5] Douglas E. Comer, “The Internet Book”, Prentice Hall

of India, New Delhi, 2001.

[6] A. K. Sharma, J. P. Gupta, D. P. Agarwal, “A novel

approach towards efficient Volatile Information

Management”, Proc. Of National Conference on

Quantum Computing, 5-6 Oct.’ 2002, Gwalior.

[7] AltaVista, “AltaVista Search Engine,” WWW,

http://www.altavista.com.

[8] Shaw Green, Leon Hurst , Brenda Nangle , Dr. Pádraig

Cunningham, Fergal Somers, Dr. Richard Evans,

“Sofware Agents : A Review”, May 1997.

[9] Cho, J., Garcia-Molina, H., Page, L., “Efficient

Crawling Through URL Ordering,” Computer Science

Department, Stanford University, Stanford, CA, USA,

1997.

[10] O. Kaljuvee, O. Buyukkokten, H. Garcia-Molina, and A.

Paepcke. “Efficient web form entry on pdas”. Proc. of

the 10th Intl. WWW Conf., May 2001.

http://oak.cs.ucla.edu/~cho/papers/cho-mirror.pdf

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1144

[11] Ching-yao wang, ying-chieh lei, pei-chi chang and

shian- shyong tsen National chiao-tung university, “A

level wise clustering algorithm on structured

documents”

[12] Benjamin Chin Ming Fung, “Hierarchical document

clustering using frequent itemsets”

[13] Francis Crimmins, “Web Crawler Review”.

[14] A.K.Sharma, J.P.Gupta, D.P.Agarwal, “An Alternative

Scheme for Generating Fingerprints of Static

Documents”, accepted for publication in Journal of

CSI..

[15] Allan Heydon, Marc Najork, 1999,“ Mercator: “A

Scalable, Extensible Web Crawler”, Proceedings of the

Eighth International World Wide Web Conference,

219-229, Toronto, Canada, 1999.

[16] F.C. Cheong, “Internet Agents: Spiders, Wanderers,

Brokers and Bots ”, New Riders Publishing,

Indianapolis, Indiana, USA, 1996.

[17] Frank M. Shipman III, Haowei Hsieh, J. Michael

Moore, Anna Zacchi , ”Supporting Personal

Collections across Digital Libraries in Spatial

Hypertext”

[18] Stephen Davies, Serdar Badem, Michael D. Williams,

Roger King, “Google by Reformulation”: Modeling

Search as Successive Refinement

[19] Gautam Pant, Padmini Srinivasan1, and Filippo

Menczer, “Crawling the Web”

[20] Monica Peshave ,”How Search engines work and a

web crawler application”

[21] Ben Shneiderman ,” A Framework for Search

Interfaces”

[22] Danny C.C. POO Teck Kang TOH, “ Search Interface

for Z39.50 Compliant Online Catalogs Over The

Internet”

[23] David Hawking CSIRO ICT Centre, “Web Search

Engines: Part 1”

[24] M.D. Lee, G.M. Roberts, F. Sollich, and C.J. Woodru,

“Towards Intelligent Search Interfaces”

[25] Sriram Raghavan Hector Garcia-Molina, “Crawling the

Hidden Web”

[26] Jared Cope, “Automated Discovery of Search

Interfaces on the Web”

[27] IVataru Sunayama' Yukio Osan-a? and Iviasahiko

Yachida', “Search Interface for Query Restructuring

with Discovering User Interest”

[28] Stephen W. Liddle, Sai Ho Yau, and David W.

Embley, “On the automatic Extraction of Data from

the Hidden Web”

[29] Gualglei song, Yu Qian, Ying Liu and Kang Zhang,

“Oasis: a Mapping and Integrated framework for

Biomedical ontologies”

[30] Miyoung cho, Hanil Kim and Pankoo Kim, “ A new

method for ontology merging based on the concept

using wordnet”

[31] Pascal Hitzler, Markus Krotzsch, Marc Ehrig and York

Sure, “ What is ontology merging”

[32] Natalya Fridman Noy and Mark A. Musen, “PROMPT:

Algorithm and tool for automated ontology merging and

alignment”

[33] Dinesh Sharma, Komal Kumar Bhatia, A.K Sharma,

“Crawling the Hidden web resources”, NCIT-07 , Delhi

[34] Dinesh Sharma, “Crawling the hidden web resources

using agent” ETCC-07. NIT- Hamirpur

