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1. Abstract 
Cryptosystems often take slightly different amounts of running time depending on the input and the used key. This 

timing information, extracted from the decryption process, can be used to derive information about the secret key. This 

new class of attacks on implementations of cryptosystems is named Timing Attacks. Timing attacks attempt to exploit 

the variations in computational time for private key operations to guess the private key. This type of attack is primitive in 

the sense that no specialized equipment is needed. An attacker can break a key by simply measuring the computational 

time required by the user inputs and recording those user inputs. This paper is aimed to analyse the performance of 

Timing Attack on Elliptic Curve Cryptosystem. The main advantage of Elliptic Curve Cryptography is smaller key size, 

it is mostly used for public key infrastructure 
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2. Introduction 

Timing Attacks were first introduced in a paper by Kocher [4]. Kocher describes the general idea of Timing Attack and 

shortly reports on some results for the RSAREF implementation of the RSA cryptosystem. He also claims that the same 

idea can be used for discrete logarithm based cryptosystems like Diffie-Hellman, DSS, and other systems. Later Kocher's 

timing attack on RSA was modified and practically examined, e.g. by Dhem et.al. on a RSA smart card implementation 

[6], and by Brumley and Boneh on the RSA implementation of the OpenSSL library [1]. We do however not know about 

any successful practical results for timing attacks when applied to elliptic curve cryptosystems. 

           Elliptic curve (EC) cryptosystems have gained large support in recent years after several standard documents on 

public key cryptography included EC cryptosystems and EC signature schemes [7]. Their main advantage in comparison 

to RSA is significantly smaller key sizes for similar security levels. The Wireless Transport Layer Security (WTLS) 

specification for securing wireless applications therefore also explicitly supports elliptic curves cryptography for wireless 

applications [8]. In this paper, we report on experimental results for timing attacks when applied to elliptic curve 

cryptosystems. We use a software implementation of the basic scalar point multiplication algorithm for points defined 

over finite prime fields GF(p) as described in [7]. We start with a short explanation of the necessary facts about elliptic 

curves, timing attack mechanism, Finally we describe practical results from our simulation of timing attacks. 

 

3.  Basics of Elliptic Curve 
This section explains some necessary background information on elliptic curves (for a more detailed description, see 

[7]). Let GF(p) be the finite prime field with p elements, where p is prime. We define the group of points E(GF(p)) on an 

elliptic curve (a, b) ∈  GF(p)2 as the set of solutions (x, y) ∈  GF(p)2 to the equation 

 

                                                  y
2
 ≡ x

3 
+a x+b (mod p) (1) 

 

Together with a point at infinity O = (∞,∞). These points form an abelian (additive) group where the group operation is 

defined by the following formulas: 

• O is the zero element. 

• The negative point of (x, y) is the point (x, -y). 

• For two non-zero points P1 = (x1, y1) and P2 = (x2, y2) with P1≠ P2, we determine the 

sum P3 = (x3, y3) = P1 + P2 as 

 

                                          x3 ≡ −x1−x2−l
2

 (mod p)      (2) 

                                          y3 ≡ −y1+l(x1−x3)(mod p)   (3) 

 

Where l ≡ (3x1
2 

+a) / (2 y1) (mod p) if P1 = P2, and l ≡ (y2−y1) / (x2−x1) (mod p) otherwise. For an integer k > 0 and a 

point P, we define scalar multiplication k ∙ P for the point P as adding P (k -1) times to itself. There exist various 

algorithms for computing scalar multiplication (see [3]). In this paper, we consider only the following basic binary left-

to-right fast multiplication algorithm: 
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Algorithm 1: (Scalar Point  Multiplication) 

Input:  Point P, integer k > 0 with binary 

            representation k = (1 kw-2... k0)2. 

Output: Point k ∙ P 

1. Let Q = P 

2. for j = w - 2 downto 0 do 

        Q = 2 ∙ Q 

         if kj = 1 then Q = Q + P 

    done 

3. return Q 

 

Definition 1: The Elliptic Curve Discrete Logarithm Problem (ECDLP) is defined as the problem computing the 

integer k only with knowledge of the elliptic curve E and the two points P and Q = K∙P∈E(GF(p)) without prior 

knowledge of k. ECDLP is generally considered to be a very difficult problem if the field characteristic p is sufficiently 

large (at least 160 bit), and the order of the group of points on the elliptic curve is prime (or ''almost prime''). Up to now, 

there exists no algorithm that can solve ECDLP for such curves in reasonable time. Therefore point multiplication was 

chosen as the ''trapdoor one-way function'' used in elliptic curve public key cryptosystems (ECC) and elliptic curve 

signature schemes (ECDSA). For more details on applications of elliptic curves for public key cryptography, we refer to 

[7]. Timing attack use the following scenario: Assume that the unknown secret key k is stored securely and cannot be 

accessed directly. We can compute k ∙ Pi for arbitrarily many random points Pi. Moreover we are able to determine the 

running time Ti of each of these computations (in our simulation, we uses Algorithm 1 for fast multiplication). We might 

also be able to determine running times for a single point addition or point doubling for arbitrarily chosen points. 

 

4.  Timing Attack 
Recently, a new class of cryptanalysis aimed at a cryptosystem’s implementation-specific weaknesses has attracted great 

interest. This kind of cryptanalysis exploits the leak of information such as timing, power consumption, and 

electromagnetic radiation from system operations to facilitate attacks on the cryptosystem. Since the information used by 

the attack is not in the “main channel”, the input or output, we call these types of attacks “side-channel” attacks. In this 

paper, we will focus on timing attacks. 

 Let’s think the cryptosystem as a black box with input and output which constitute the “main channel” of the 

system. We can measure the time it takes for the system to give an output after given an input. The time required for 

different inputs may vary, forming a timing distribution. If this timing distribution is related to the secret (key bits) in the 

system, we may have a way to reveal the secret key. 

 

 

 

                     Input Output 
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5. The Attacker’s Task 
 The attacker has the ability to observe a sequence of elliptic curve operations, thus, the attacker’s aim is to calculate and 

exploit the probabilities of certain sequences of bits given an observed sequence of elliptic curve operations. Using the 

information of such conditional probabilities, the key-space that has to be searched to find the correct ephemeral key, can 

be significantly reduced. This is because certain combinations of patterns in the power trace and certain combination of 

digits are less likely than the others (or even not possible at all). The attacker’s task can be stated in a more formal way. 

Let X be a random variable that denotes a sequence of elliptic-curve operations and |X| the length of X (i.e. the number of 

elliptic-curve operations in this sequence). For example, X=“DDD” (i.e. the realization of the random variable X consists 

of three consecutive elliptic-curve point-double operations) thus |X| = 3, or X=“DAD” (i.e. the realization of the random 

variable X consists of an elliptic-curve point-double operation, an elliptic-curve point-addition operation and an elliptic-

curve point-double operation) thus |X| = 3. Let Y be a random variable that denotes a sequence of digits in the digit 

representation of k and |Y | the length of Y (i.e. the number of digits). For example Y = “000” (i.e. the realization of the 

random variable Y consists of three consecutive zeros) thus |Y | = 3, or Y = “01” (i.e. the realization of the random 

variable Y consists of a zero and a one digit) thus |Y | = 2. Then the attacker’s goal is to calculate and exploit the 

conditional probability.          

                     

6. Mathematical Model 
 Let us denote a set of inputs (plaintexts) to the system by SM = {M1,M2,M3,……Mn} All the possible keys compose the 

key set denoted by SK = {K1,K2,K3,…………Kd} where d is the number of possible keys. If the cryptosystem 

     Cryptosystem 

       (Secret key) 
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implementation we want to attack is vulnerable to timing attacks, the timing distribution of the input will be dependent 

on the key used in the system. Thus for key Ki , we will have a timing distribution donated by ) Pi(t)= F(SM , Ki ) which is 

different from that of other keys.  

 For the system we want to attack, we measure the timing information for a set of input values from the set SM, 

and form a timing distribution P(t). The attack to the system will be reduced to a usual detection problem which tries to 

detect Ki knowing Pi (t) and P(t). We can apply, at least in theory, regular detection solutions to solve the problem. For 

example, the detection problem has a general form of the solution: if T (P(t), Ki ) > Threshold ( Ki , SM ) , Ki is detected. 

As long as we find the proper transform function T() and the threshold functions, we break the system. 

 

7. Timing Attack applied to Elliptic Curves 
Timing attack is based on the following idea. Denote by kj the j-th bit of the secret key k. Then we get the 

following equation for the total running time in Algorithm 1 with input point Pi : 

 

 w-1 

T i   ═ ei  + ∑ (Di , j  + k j  Ai , j ) .                                           (4)  

 j=0 

 

In this formula, Di,j denotes the time needed for a point doubling operation for bit j, and Ai,j  denotes the time for 

an addition operation for bit j, ei   is some ''noise'' (run time for looping, if-operation, and other external 

influences). Note that both the doubling time Di,j and the addition time Ai,j depend on the chosen random point Pi 

(index i) and the iteration index j. Let 0 < r < w, and assume that we already know the ''upper'' bits kw-1 , ... , kr+1   of 

the bin- ary representation of the secret key k. Kocher's fundamental idea is the fact that we can determine the 

values of Di,r and Ai,r with this information. For every sample point Pi we use the known bits of k to determine the 

value of the point Q at the beginning of iteration j = r in Algorithm 1. Once we know these points we can 

determine both Di,r and Ai,r using the decryption device (we assume that we can determine the run time for a single 

point operation). The next step of timing attack is the usage of Di,r and Ai,r to determine a (probable) value for the 

next bit kr using statistical methods. Similar to the above method, we can assume that we also know all intermediate 

timing values Di,j and Ai,j for all r ≤ j ≤ w-1 and all samples indeces i. Therefore we can compute Ti   m i n u s  the 

''upper part'' of the sum in (4)  

 

8. Experimental Results 
Table 1 describes some practical information applied to random scalars of different sizes. We show the length of prime 

number, the complete running time, and the average number of iterations for one bit of the scalar. It should be noted that 

all the point computations and field inversions were repeated several times, until the variance of the single timings for 

these  operations  was  sufficiently  small (and  hopefully  the  timing  error  sufficiently  small). Seeing the number of 

iterations (i.e. backtracks) especially for large scalars, we dare to conclude that several parameters of our implementation of 

the timing attack algorithm (e.g. the sample number, the definition of ''sufficiently different'') are not yet chosen optimally. 

Further examinations and determination of optimal parameters have to be done in future.  

 

Length of  

Prime  Number 
Average number of 

iterations per bit 

Total Running 

Time 

2
24 

-1 3.54 11 min 13 sec 

2
24

 0.71 1 min 20 sec 

2
32 

-1 1.16 18 min 37 sec 

2
32

 0.84 7 min 1 sec 

2
48 

-1 1.10 27 min 15 sec 

2
48

 0.94 12 min 8 sec 

2
96 

-1 2.33 53 min 32 sec 

2
96

 1.28 22 min 7 sec 

2
128 

-1 4.06 58 min 8 sec 

2
128

 1.37 43 min 32 sec 

2
159 

-1 7.38 59 min 26 sec 

2
159

 1.88 53 min 15 sec 
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9. Conclusion 

The running time of the attack can be several hours; it always succeeded to determine the secret scalar. We are optimistic 

that further experiments can greatly improve the still large running time by searching for more optimized parameters. 

Therefore timing attacks should be considered as a serious threat for EC security system implementations in mobile 

applications and hence anticipated. Anticipating timing attacks is quite simple  
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