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Abstract 
The Embedded Atom Method (EAM) was employed to study the structure of body centered cubic (BCC) dislocation cores. 

Core energies, number of nearest neighbour atoms, stress tensor components, resolved shear stresses and dynamic dislocation 

core stresses were calculated for four types of dislocation cores. A dynamic dislocation model was presented and a “path of 

least resistance” (POLR) mechanism suggested for the determination of the Peierls stress. It was concluded that a sequence of 

stress components acting on the dislocation core in a  slip system were responsible for the proposed core atom 

motion resulting in the overall dislocation motion. A review of the resolved shear stress in the lattice was then used to 

collaborate the results of the dynamic dislocation model and the core atom motion mechanism model. 
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1. Introduction 
The characterization of dislocation properties will frequently go beyond the simple continuum model and involve the lattice 

structure at the dislocation’s core. The effects of the dislocation core have been found to be significant in the low temperature 

behavior of body centered cubic (BCC) metals [1], the plastic anisotropic behavior of ionic crystals [2, 3] and hexagonal 

close packed (HCP) metals [4], and the dislocation climb behavior in oxide crystals [ 5]. 

The Peierls-Nabarro model was the first successful model to account for the structure at the core of the dislocation [6]. A 

more accurate representation of the core configuration was later accomplished through lattice static or atomic models. Lattice 

static models are limited to the harmonic approximation, which is not strictly valid in the dislocation’s core region. Atomic 

models are more suited to dealing with highly distorted lattice configurations [7]. In atomic models, the volume surrounding 

the core of the dislocation (region I) has been modeled as consisting of atoms interacting via a given non-linear potential, 

while the volume surrounding region I (region II) has been treated using the theory of elasticity. The power of the atomic 

models lies in their ability to accurately describe the core, which is dependent on the physical validity of the potentials used 

to describe the interaction among the atoms. A rigorous determination of the minimum energy with respect to the 

configuration of the dislocation core requires the use of quantum mechanical (QM) models. However, the highly distorted 

nature of the core severely limits the detail to which these interactions can be evaluated. The aim has been to find tractable 

approximate treatments, which are physically accurate over the range of distortions anticipated. The description of the core 

may then be used to predict the physical behavior of the dislocation in terms of its evolution and motion, and to determine the 

strain energy and the Peierls stress at which these physical actions take place. 

The EAM has matured as a technique and is now applied in the study of material structures containing defects [8, 9, 10, 11]. 

Applications have been developed for the study of the structure of tilt boundaries [12, 13], phonon dispersion [14, 15], linear 

thermal expansion [15], point defects [14, 16, 17], and lattice dynamics [14, 18]. More recent research has focused on the 

modeling of potentials for application to industry specific problems. Potentials for studies on the effect of phosphorous on the 

embrittlement of nuclear reactor pressure vessels [19], the study of reactor pressure vessel steel thermal annealing [20], the 

generation of phase diagrams [1, 21], and the dissolution and diffusion of hydrogen in bulk  α-Fe as well as binding of 

hydrogen to surfaces, vacancies and dislocations [ 22] are available. However, the simulation of the dynamic-spatial atomic 
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structure of dislocation cores, and its contribution to the behavior of dislocations viewed as an atomic scale problem, has not 

been comprehensively addressed. There exists opportunity to advance the development and application of potentials to model 

dislocation cores and dislocation families for the application to a wider range of industrial problems. 

2. Method 
This work generated the dislocated structure by the application of a set of displacement vectors to the points of a perfect 

lattice about a prescribed dislocation core centre. The dislocation line direction was set as . The distortion was 

introduced and the slip plane created by displacing the block of atoms on one side of a predetermined plane by half a Burgers 

vector. A transition zone was formed around the dislocation core where the first and second rows of atoms were displaced at 

1/6 and 1/3 of the Burgers vector.  

The direction of the Burgers vector was defined for the pure edge, pure screw and mixed dislocations as that direction, 

oriented such that together with the dislocation line vector, defined the dislocation type, and such that this direction resulted 

in a whole number of lattice displacements for the defined dislocation type. Consequently, two pure and two mixed 

dislocations were possible for the body centred cubic (BCC) lattice. These were the pure screw, the 35.26 degree screw, the 

70.53 degree screw and the pure edge dislocations. The dislocation core was formed at the intersection of the slipped and un-

slipped block of atoms at the edge of the slip plane. The use of the different displacement vectors resulted in the generation of 

the different types of dislocation cores.  

Simulation was carried out for static and dynamic conditions. The dynamic conditions were generated by moving the block 

of atoms on one side of the slip plane by predefined displacement vectors. These displacement vectors were set to a fraction 

of the Burgers vector for each dislocation type, within the slip plane. 

This work applied the Embedded Atom Method (EAM) potential of Mendelev et al. [23] to evaluate the cohesive strength 

and stress tensor of the four different types of dislocation cores. This potential has been tested and found to stabilize the non-

degenerate dislocation cores on  glide planes in agreement with experimental data for dislocation motion at low 

temperatures [24]. The cohesive strength and the stress tensors for the dynamic simulations were calculated after each 

incremental displacement giving rise to a varying strength and stress profile. 

Code was prepared on a Fortran 90 platform and the computation utilized a single scale atomic model with an extended 

“region I” of 1331 atoms in an “11 x 11 x 11” block of atoms to carry out the simulations. This was in variation to the 

traditional atomic model [7], as it eliminated the need to couple the two windows of resolution.  

This paper presents results on the simulation of the behavior of the dislocation cores. Section 1 presents results from the 

review of the cohesive strength and stress tensor of the dislocation core at equilibrium lattice spacing. This is followed by 

Section 2, which presents a dynamic dislocation stress analysis. 

3. Results And Discussions 
3.1. Static Analysis 
The cohesive strengths of the static dislocated lattices are given in Table 1. These results were obtained from simulations for 

the four types of dislocation cores and compared with the results for the perfect lattice. The results revealed a reduction of 

cohesive strength with the introduction of dislocations, consistent with empirical observations. However, the differences in 

cohesive strength were small (less than 1%), hence the results were only of qualitative value. Whereas the pure screw 

dislocation presented a higher cohesive strength per atom than the edge dislocation, indicating higher edge dislocation 

mobility consistent with empirical findings [25, 26], the 70.53 degree screw did not show a high cohesive strength, which 

was inconsistent with empirical findings, which report that the 70.53 degree mixed dislocation has exceptionally high Peierls 

stress [27].  

Two reasons were suggested for these observations. The first was that these results were generated from simulations of a 

static lattice structure, providing a snapshot of the comparative cohesive strength of the equilibrium lattice. This state may not 

be that where the Peierls stress would be determined. The second was that the lack of gradient terms in the formulation of the 

cohesive strength may render the computation incapable of capturing the distortion gradient in the dislocation core. This 

suggestion was reasonable as it is observed that the embedding energy did not vary with the type of dislocation, while the 

pairing energy varied only marginally. The evaluation of the dynamic dislocation was used to explore the first assertion, 

while the use of a gradient sensitive electron density function was suggested as a test of the second assertion.  

The cohesive energy per atom about the dislocation core was taken as a measure of the limiting stress required to overcome 

inter atomic bonding, to enable dislocation glide. This was then related to the macroscopic yield stress by the amalgamation 

of the various effects of the density of dislocations contained in the matrix. However, the above results illustrated the 

shortcomings of this approach, and the postulated hypothesis that a gradient-based EAM functional was more suitable, will 

be evaluated elsewhere. The use of dislocation dynamics for the direct computation of the Peierls stress was feasible and its 
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application has been supported by existing literature where empirical findings relate the macroscopic yield stress to the 

Peierls stress at low temperatures [28]. 

Table 1: Embedding and pair energy contributions to the cohesive energy for four types of dislocations (eV/atom). 

Dislocation 

type 

Embedding 

energy, F() 

1
st
 Pair 

potential, 

V(rij) 

2
nd

 Pair 

potential, 

V(rij) 

3
rd

 Pair 

potential, 

V(rij) 

Cohesive 

energy / atom, 

Ec (eV) 

No. of 

nearest 

neighbours 

Burgers 

vector 

direction 

Pure screw -5.495193 1.48466 0 0 -4.01053 57 
 

70.53
O
 screw -5.495193 1.48539 0 0 -4.009801 57 

 

35.26
O
 screw -5.495193 1.48466 0 0 -4.01053 57 

 

Pure edge -5.495193 1.48514 0 0 -4.010046 56 
 

        
Perfect lattice -5.495382 1.48328 0 0 -4.012102 58 - 

  

Simulations were also carried out to generate the stress tensor components at the dislocation core. These values represented 

the resulting stress due to lattice distortion forming the dislocation core. Six stress tensor components were generated with 

the remaining three obtained by application of principle of complimentary stress. 

Table 2: Stress tensor components calculated for four types of dislocations (GPa.). 

Dislocation type 11  12  13  22  23  33 

Pure screw 1.4817 -6.2778 -5.1545 4.1319 -5.6076 3.7813 

70.53 degree screw -2.163 -7.6378 -5.5587 4.6258 -5.7451 2.6820 

35.26 degree screw 1.4947 -6.2258 -5.1025 4.3527 -5.4128 4.0021 

Pure edge 2.2437 -7.1664 -5.0673 1.9309 -5.8403 3.7959 

 

Results presented in Table 2 revealed that the lowest stresses were the  tensor component, which corresponded to  

direction, and the   tensor component, which corresponded to the  direction. The  directions were of interest as 

dislocations in these directions contribute substantially to the flow stress [29] and are formed by the interaction of two 

 dislocations. The resulting stress components suggested that two or more stress components combined to generate the 

 type motion. Additionally, dislocation core reconstruction across a  zone axis was attributed to the similar 

combination of stress components. This was consistent to observations of dissociation of screw dislocation cores across 

adjacent  planes [30, 31, 32]. The intersection of non-coplanar dislocations and their interaction was enhanced by the 

presence of a  zone axis. In addition, edge dislocation core spreading to adjacent  planes has been reported [33]. It 

was proposed that dislocation core spreading and core-core interaction be explained by the analysis of combination of 

dislocation core stress components. 

The precise motion of the individual atoms was not determined, but the values of the stress tensor components suggested that 

motion in the ,  and  directions was to be expected. This motion corresponded to atomic movement in 

different  and  planes belonging to the given  zone axis. The very nature of a 3-dimensional lattice 

suggested that out-of-plane motion was necessary for the “micro-cleavage” of the lattice to enable dislocation motion. 

Additionally, the presence of the  zone axis enabled the out-of-plane motion to occur at the lower stress levels 
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corresponding to the ,  and  directions. This visualization for dislocation core evolution was consistent with 

observations of moderate non-planar spreading of dislocation cores in BCC lattice [32].  

3.2. Dynamic Analysis 
Peierls stress calculations have concentrated on the body centered cubic (BCC) metals because it was realized that their 

dislocation core effects contribute to a high Peierls stresses. Dislocation dissociation in BCC metals is localized to the core 

region (there is no stable stacking fault separating the partials) and, in the case of the  screw dislocation, it is non-

planar. The BCC screw dislocation core is rather compact and this gives rise to a large Peierls stress [34].  

Figures 1 to 5 present the variation of the lattice stress about the dislocation core as the dislocation moves rigidly along the 

direction of its Burger’s vector. All the dislocations presented different sinusoidal stress component variation. These curves 

suggested that the movement of atom rows past rows of other atoms was synchronised, enabling the simulation to detect the 

variation. The positive and negative values were interpreted as tensile and compressive stresses respectively and it was noted 

that the direct stresses were positive (except for  component where the troughs dip below zero) and the shear stresses are 

negative. It was expected that movement of atoms around the dislocation core resulting in dislocation motion would follow 

the path of least resistance (POLR) and would involve changes in direction. 

 

Fig 1: Variation of the stress generated as a pure screw dislocation in Fe lattice moves in the  direction. 

The stress cycle for the pure screw is presented in Figure 1. The POLR was in the  direction over most of the path. At 

some point, the curve for  intersected that of  and exceeded it for a short potion of the cycle. Over this period,  was 

at its lowest value and provided the POLR, after which  resumed as the POLR. This sinusoidal path oscillated between 

1.26GPa
 
and 2.27GPa.  This compared well with published values of the Peierls stress of 1.2 to 1.8GPa from Chaussidon et 

al. [24] and 1.3 to 1.9GPa from Ventelon [35] for BCC Fe. The stress component  corresponded to motion along the 

 plane, and involved displacement of atoms away from the  glide plane ahead of the dislocation core. The stress 

component  corresponded to motion along the  plane, and involved displacement of atoms along the glide plane 

ahead of the dislocation core. The proposed sequence supported the hypothesis that dislocation motion occured 

predominantly by the “peeling” of atoms around the dislocation core as a stress-enabled mechanism. The shear stresses were 

in the order of magnitude -6.44GPa, with smaller amplitude than the direct stresses. Additionally, the magnitude of the shear 

stresses was of the same order of magnitude as the peak direct stresses of 5.41GPa. These higher stress values were an 

indication of the stress required to generate catastrophic fracture of the lattice. Consequently, it was reasonable to infer that 

the ultimate tensile stress should be in the order of 2.8 times the yield stress. This result was obtained by comparing the 

maximum stress values related to catastrophic failure and those related to dislocation motion and hence material yielding. 
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Fig 2: Variation of the stress generated as a 70.53 degree screw dislocation in Fe lattice moves in the direction. 

The stress component cycles for the 70.53 degree screw are presented in Figure 2. The POLR was along the direction 

corresponding to the  stress component. It was noteworthy that this stress component traversed the zero stress value, with 

a maximum positive value 3.21GPa and a maximum negative value of -2.91GPa.  This curve intersected that of  at 

1.91GPa and  at 2.54GPa at different periods of the cycle. The intersection occurred over a small interval, and the 

resulting change in POLR, for the atoms around the dislocation core traversed three directions. The larger maximum value of 

 (though negative in sign) implied that a 70.53 degree screw was harder to move than a pure screw dislocation. In 

comparison to the results for the pure screw dislocation, the maximum direct stress increased to 6.06GPa, with a 

corresponding increase of the maximum shear stress value to -9.55GPa. The larger value of the maximum shear stress and the 

divergence in shear stress curves implied that a narrow band catastrophic ultimate stress would not result from the presence 

of 70.53 degree screw dislocations. These results were supported by empirical findings [27] that report that an exceptionally 

high Peierls stress is experienced by the 70.53 degree screw. 

The stress component curves for the 35.26 degree screw are presented in Figure 3. The POLR was again along the direction 

corresponding to the  stress component. This stress component oscillated between a maximum value of 2.76GPa and a 

minimum value of 1.27GPa. The POLR changed direction when the  stress component curve intersected with the  

stress component curve at about 2.42GPa. The  stress component corresponded to motion on the  plane, and 

involved movement of atoms away from the slip plane around the dislocation core. A maximum magnitude shear stress of -

6.51GPa
 
was noted, with a spread of the shear stress components similar to that of the pure screw dislocation. This implied 

that a narrow band catastrophic ultimate stress may result from the 35.26 degree screw dislocation.  
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Fig 3: Variation of the stress generated as a 35.26 degree screw dislocation in Fe lattice moves in the  direction. 

Results on simulations for the pure edge dislocation presented in Figure 4 presented the most random curves for the four 

types of dislocations. Similar sinusoidal curves were obtained for the shear stress components. The POLR was again 

provided by the curve corresponding to the stress component, which spanned the range -0.848GPa to 2.45GPa. Along this 

curve, intersection with  stress component curve at 1.93GPa and  stress component curve at 2.4GPa occurred with 

corresponding change in direction into adjacent zone  axis planes. The availability of a larger number of atom motion 

directions, only replicated by the 70.53
O
 screw, was envisaged as the possible mechanism for a greater mobility of the 

dislocation core. Additionally, this dislocation presented the lowest magnitude stress of -0.848GPa, which was considered to 

enhance dislocation motion over other types of dislocations.  The spreading of the shear stress curves suggested that a narrow 

band catastrophic ultimate stress would not result from these dislocations. 

The curves in Figures 1 to 4 demonstrate that the Embedded Atom Method (EAM) formulation applied to evaluate the Peierls 

stress had the required sensitivity to differentiate between the dislocation types. This supported the earlier assertion that 

dislocation dynamics based upon the EAM model presented a more complete description in material defect analysis. 

Specifically, it was suggested that the interaction of combinations of stress components resulted in the POLR, and therefore 

determined the Peierls stress profile. The lack of symmetry of the stress curves resulted from the effects of the twinning/anti-

twinning asymmetry of the BCC lattice, and this was therefore more pronounced for the edge dislocation. The short range 

nature of the EAM potential resulted in a stress computation at the dislocation core only. It was proposed that a more 

complete approach would be to generate stress components due to dislocation cores at locations removed from the dislocation 

core. This would be invaluable in the study of dislocation interaction with other dislocations, obstacles and grain boundaries. 

Thus, there was need for the development of a longer range potential, specifically suited to dislocation interaction.  

 

Fig 4: Variation of the stress generated as a pure edge dislocation in Fe lattice moves in the  direction. 

Schmid’s law [36] states that glide on a given slip system is controlled by the resolved shear stress on that system known as 

the Schmid stress, and in a rate-independent formulation, glide commences when this stress reaches a critical value known as 

the critical resolved shear stress (CRSS). Implied is that plastic deformation should not be affected by non-glide stress tensor 

components and is largely dependent on the existence of planar dislocation dissociation mechanisms. For body centered 

cubic (BCC) lattice structures, stress tensor components in associated  planes may act on dislocation cores spread into 

these associated planes resulting in non-glide stresses contributing to plastic deformation. Non-Schmid behaviour of BCC 

metals therefore results from the three way dislocation core dissociation or spreading on associated  zone planes and is 

supported by atomistic calculations [26, 37, 38, 39]. However, a convergence of atomistic calculations and experimental 

results is lacking, with computations overestimating the Peierls stress [40, 41]. The resolved shear stress in the direction of 

the Burger’s vectors is presented in Figure 5. 
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Fig 5: Variation of the resolved stress generated as a dislocation in Fe lattice moves in the direction of the burgers vector. 

Figure 5 summarised the results of Figures 1 to 4 and revealed that the edge dislocation provided the least resolved shear 

stress over most of the dislocations motion. It was therefore inferred that the edge dislocation possessed the greatest mobility 

consistent with empirical findings [25]. The 70.53 degree screw dislocation presented a curve with a much higher amplitude 

and peak stress value. This was again consistent with empirical findings, which reported its high Peierls stress [27]. Also 

noteworthy was that the magnitude of the resolved shear stress was much higher than both experimental and calculated 

Peierls stress [35]. Therefore it is inferred that the Peierls stress was related to the active stress components, and not to the 

overall resolved shear stress. 

 

4. Conclusions And Recommendations 
The application of the Embedded Atom Method (EAM) to the evaluation of the cohesive strength and the stress tensor at the 

dislocation core, using a single static window of resolution, demonstrated the limitation of the technique and led to the 

proposal that dynamic dislocation analysis or a gradient-based functional be developed to enhance the method’s sensitivity to 

distortions at the dislocation core.  Stress components generated at equilibrium lattice conditions were used to show the 

potential relation between the evolution of the dislocation core and the specific displacements related to the stress 

components. 

Analysis of the dislocation in motion was also presented and a “path of least resistance” POLR mechanism proposed to 

explain the evolution of the dislocation core. These results illustrated the contribution of different stress components to the 

motion of atoms about the core and supported the proposed “peeling” of atoms about the core. A comparison of the resolved 

shear stress in the lattice provided a alternative view to collaborate the results obtained from the analysis of the dynamic 

dislocation core and the proposed mechanism explaining the motion of the dislocation core atoms. Finally, it was concluded 

that the Peierls stress was related to the active stress components, and not to the overall resolved shear stress. 
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