
Varsha vishwarkama, Abhishek choubey, Arvind Sahu /International Journal Of Computational Engineering

Research/ ISSN: 2250–3005

 IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |365-368 Page 365

Implementation of AMBA AHB protocol for Wide Narrow BUS-SLAVE

combination using VHDL

 Varsha vishwarkama
1
 Abhishek choubey

2
 Arvind Sahu

3

M.Tech, Rkdf-Ist,Bhopal Hod (Ec) Rkdf-Ist,Bhopal Asst.Prof.Tieit,Bhopal

Abstract-
The Advanced Microcontroller Bus Architecture (AMBA) is an

open System-on-Chip bus protocol for high-performance buses

on low-power devices. In this paper we implement a simple

model of AMBA and use model checking and theorem proving

to verify latency, arbitration, coherence and deadlock freedom

properties of the implementation. Typical microprocessor and

memory verifications assume direct connections between

processors, peripherals and memory, and zero latency data

transfers. They abstract away the data transfer infrastructure as

it is not relevant to the verification. However, this infrastructure

is in itself quite complex and worthy of formal verification. The

Advanced Microcontroller Bus Architecture1 (AMBA) is an

open System-on-Chip bus protocol for high-performance buses

on low-power devices. In this report we implement a simple

model of AMBA and verify latency, arbitration, coherence and

deadlock freedom properties of the implementation. The

verification is conducted using a model checker for the modal

μ-calculus Lμ, that

has been embedded in the HOL theorem prover [3]. This allows

results from the model checker to be represented as HOL

theorems for full compositionality with more abstract theorems

proved in HOL using a formal model theory of Lμ that we have

also developed [4].

Keywords: AMBA, VHDL, ASB, APB, DMA, EDAROM,

RAM, System-on chip.

1. Introduction- AMBA is an open specification that

specifies a strategy on the management of the functional blocks

that sort system on chip (SoC) architecture. It is a high-speed,

high-bandwidth bus that supports multi master bus management

to get the most out of system performance.

The AMBA specification defines three buses:
 Advanced High-performance Bus (AHB): The AHB is

a system bus used for communication between high clock

frequency system modules such as processors and on-chip

and off-chip memories. The AHB consists of bus masters,

slaves, an arbiter, a signal multiplexor and an address

decoder. Typical bus masters are processors and DMA

devices.

 Advanced System Bus (ASB): The ASB is also a

system bus that can be used as an alternative to the AHB

when the high-performance features of AHB are not required.

 Advanced Peripheral Bus (APB): The APB is a

peripheral bus specialized for communication with low-

bandwidth low-power devices. It has simpler interface and

lower power requirements.

Designers can use either the AHB or the ASB in conjunction

with the APB. The APB has a single bus master module that

acts as a bridge between the AHB or ASB and the APB. The

AMBA specification is hardware and operating system

independent and requires very little infrastructure to implement.

Figure 1 shows a typical AMBA-based microcontroller. We

follow revision 2.0 of the AMBA specification.

2 AMBA APB- The APB is optimized for low power

consumption and low interface complexity. It is used for

connecting the high-band with system bus to low-bandwidth

peripherals such as input devices. There is a single bus master,

a single global clock and all transfers take two cycles. The bus

master also acts as a bridge to the system bus, to which it can

reconnect as a slave. The address and data buses can be up to

32 bits wide.

2.1 AMBA APB Specification-The operation of the APB

consists of three stages, all of them are triggered on the rising

edge of the clock:

1. IDLE. This is the initial and the default state of the bus when

no transfer is under-way.

2. SETUP. The first stage of a transfer is a move to the SETUP

state. The address, data and control signals are asserted during

this phase but may not be stable. This stage always lasts for one

clock cycle and then the operation moves to the ENABLE

stage.

3. ENABLE. The address, data and control signals are stable

during this phase. This phase also lasts one clock cycle and

then moves to the SETUP or the IDLE stage depending on

whether or not another transfer is required.

 ABP

 AHB ABP

 AHB to ABP

Fig 1 AMBA based microcontroller system

High Bandwidth

Memory Interface

High

Performance

ARM

Processor

High

Bandwidth

on chip

RAM

DMA BUS

Master

UART
TIMER

Keypad PIO

B

R

I

D

G

E

Varsha vishwarkama, Abhishek choubey, Arvind Sahu /International Journal Of Computational Engineering

Research/ ISSN: 2250–3005

 IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |365-368 Page 366

3 AMBA AHB- The AHB is a pipelined system backbone

bus, designed for high-performance operation. It can support up

to 16 bus masters and slaves that can delay or retry on transfers.

It consists of masters, slaves, an arbiter and an address decoder.

It supports burst and split transfers. The address bus can be up

to 32 bits wide, and the data buses can be up to128 bits wide.

As before, there is a single global clock. We choose to model

the AHB rather than the ASB because the AHB is a newer

design and also because it has been designed to integrate well

with the verification and testing work flow.

3.1 AMBA AHB Specification-The operation of the AHB is

too complex to be specified in terms of a few fixed stages. A

simple transfer might proceed as follows (the list numbering

below is not cycle accurate):

1. The AHB is in the default or initial state. No transfer is

taking place, all slaves are ready and no master requires a

transfer.

2. Several masters request the bus for a transfer.

3. The arbiter grants the bus according to some priority-

scheduling algorithm.

4. The granted master puts the address and control information

on the bus.

5. The decoder does a combinatorial decode of the address and

the selected slave samples the address.

6. The master or the slave put the data on the bus and it is

sampled. The transfer completes.

3.2 Granting bus access-The arbiter indicates which bus

master currently the highest priority is requesting the bus by

asserting the appropriate HGRANTx signal. When the current

transfer completes, as indicated by HREADY HIGH, then the

master will become granted and the arbiter will change the

HMASTER [3:0] signals to indicate the bus master number.

The arbiter changes the HGRANTx signals when the

penultimate (one before last) address has been sampled. The

new HGRANTx information will then be sampled at the same

point as the last address of the burst is sampled.

3.3 AHB data bus width-One way to improve bus bandwidth

without increasing the frequency of operation is to make the

data path of the on-chip bus wider. Both the increased layers of

metal and the use of large on-chip memory blocks (such as

Embedded DRAM) are driving factors which encourage the

use of wider on-chip buses. Specifying a fixed width of bus

will mean that in many cases the width of the bus is not

optimal for the application. Therefore an approach has been

adopted which allows flexibility of the width of bus, but still

ensures that modules are highly table between designs.

The protocol allows for the AHB data bus to be 8, 16, 32,

64, 128, 256, 512 or 1024-bits wide. However, it is

recommended that a minimum bus width of 32 bits is used and

it is expected that a maximum of 256 bits will be adequate for

almost all applications. For both read and write transfers the

receiving module must select the data from the correct byte

lane on the bus. Replication of data across all byte lanes is not

required.

3.4 AMBA AHB signal list -This section contains an overview

of the AMBA AHB signals. All signals are prefixed with the

letter H, ensuring that the AHB signals is differentiated from

other similarly named signals in a system design.

Name Source Description

HCLK

Bus clock

Clock

source

This clock times all bus transfers. All

signal timings are related to the

rising edge of HCLK.

HRESETn

Reset

Reset

controller

The bus reset signal is active LOW

and is used to reset.

HADDR

[31:0]

Master The 32-bit system addresses bus.

HTRANS

[1:0] Master
Indicates the type of the current

transfer, which can be..

HWRITE

Transfer

direction

Master

When HIGH this signal indicates a

write transfer and when LOW a read

transfer.

HSIZE

[2:0]

Transferse

Master

Indicates the size of the transfer,

which is typically byte (8-bit),

halfword (16-bit) or word (32-bit).

HBURST

[2:0]

Master

Indicates if the transfer forms part of

a burst.

HPROT

[3:0]

Master
The protection control signals

provide additional information

HWDATA

[31:0]

Write data

Master

The write data bus is used to transfer

data from the bus master to the bus

slaves during write operations.

HSELx Decoder Each AHB slave has its own slave

Fig. 3.1 HGRANTx and HMASTER signals are used in a system.

Varsha vishwarkama, Abhishek choubey, Arvind Sahu /International Journal Of Computational Engineering

Research/ ISSN: 2250–3005

 IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |365-368 Page 367

Slave

select

select signal and this signal indicates

that the current

HRDATA

Slave

The read data bus is used to transfer

data from bus slaves to the bus

master during read operations.

HREADY

Transfer

done

Slave

When HIGH the HREADY signal

indicates that a transfer has finished

on the bus.

HRESP

[1:8]

Slave

The transfer response provides

additional information on the status

of a transfer.

3.5 Implementing a wide slave on a narrow bus-A wide

slave being implemented on a narrow bus. Again only external

logic is required and hence predesigned or imported blocks can

be easily modified to work with a different width of data bus.

Bus masters can easily be modified to work on a wider bus

than originally intended, in the same way that the slave is

modified to work on a wider bus, by:

• Multiplexing the input bus

• Replication of the output bus

3.6 Implementing a narrow slave on a wider bus-A slave

module, which has been originally designed to operate with a

32-bit data bus, can be easily converted to operate on a wider

64-bit bus. This only requires the addition of external logic,

rather than any internal design changes, and therefore the

technique is applicable to hard macrocells.

4 Results On Modelsim Using Xilinx Ise And Vhdl -
The overall coding part can be writing on VHDL and simulate

on ModelSim

4.1 Simulation Result of Slave 1-This simulation result

contains the signal haddr =00100000, which shows that the

master1 sending the address and control signals on the bus after

the rising edge of the clock.Also the signal hlock1=1,the

master1 requires locked access to the bus and no other master

should be granted the bus until this signal is low.

4.2 Simulation Result of Wait State-This simulation result

shows that the slave2 is unable to complete the data transfer

and put the data transfer in the wait state to complete the data

transfer with hready=0 signal. In this result because of wait

state the hwrite=0 shows that no write operation is performed.

After the wait state the hready=1 shows the slave2 complete the

transfer and slave3 is now get selected for the next data

transfer.

Fig.3.2 AHB bus master interface diagram

Fig.5.4 Simulation Result for the selection of slave1 and

data transfer

Fig.5.7 Simulation Result for wait state when hready=0

Varsha vishwarkama, Abhishek choubey, Arvind Sahu /International Journal Of Computational Engineering

Research/ ISSN: 2250–3005

 IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |365-368 Page 368

5. CONCLUSION - In this thesis we observe that the data

transfer operation from one memory to another memory is fast

as compared to serial communication by proposing the parallel

communication in AMBA AHB. It also provides the

opportunity to use master and slave up to 16 nos. and the data

of every master is read and write simultaneously. In this

implementation delay period is 4.33 ns and the clock period is

8.66 ns and frequency increases up to 115.401MHz..Here

AMBA AHB supports the data transfer by reducing the time

and increases the frequency of the bus to increase the system

performance. The use of high capacity memory management

with the AMBA AHB in this thesis successfully attempted to

find the software solution for the problem of memory compliant

in the microcontroller. The proposed implementation is capable

of running in any PC with Xilinx and Modelsim EDA tools and

FPGA board. This implementation able to sustain the external

memory bandwidth, on which the CPU, on-chip memory and

other direct memory access devices reside. This

implementation supports external memory up to 2GB.

REFERENCES –
[1] “AMBA specification (Rev2.0)”, ARM Inc.

[2] Hu Yueli,Yang Ben "Building an AMBA AHB

compliant Memory Controller” in 2011.

[3] Ashutoshku.Singh, Anurag Shrivastava, G.S.Tomar”

Design and Implementation of High Performance AHB

Reconfigurable Arbiter for on-chip Bus Architecture "in

2011.

[4] Wei Chipin,Li Zhaolin,Zheng Qingwei,Ye Jianfei, Li

Shenglong”Design of Configurable Multichannel

Interrupt Controller "in 2010.

[5] Yi Zhiqiang, Li Yun“On Chip Bus Design for HDTV

SOC Decoder” in 2010.

[6] Ramesh Bhakthatchalu, Deepthy G R, Shanooja S.

“Implementation of Reconfigurable Open Core Protocol

Complaint Memory System using VHDL” in 2010.

[7] Zhichao Zhang, Wuchen Wu “UART integration in

OR1200 based SOC design” in 2010.

[8] Purvi D. Mulani “SOC Level Verification Using System

Verilog” in 2009.

[9] Guoling Ma, Hu He “Design and Implementation of an

Advance DMA Controller on AMBA-Based SOC ”in

2009.

