
R.Arun, Dr.D.Murugan /International Journal Of Computational Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |332-336 Page 332

 MEDICAL IMAGE COMPRESSION USING REGION GROWING

 SEGMENATION

R.Arun, M.E(Ph.D) Dr.D.Murugan Asst.Prof
 Research scholar Department of Computer science & Engg

 M.S University M.S University

Abstract:

The easy, rapid, and reliable digital transmission and

storage of medical and biomedical images would be a

tremendous boon to the practice of medicine. Patients in

rural areas could have convenient access to second

opinions. Patients readmitted to hospitals could have

earlier imaging studies instantly available. Rather than

waiting for others to finish with hardcopy films, medical

and surgical teams collaborating on patient care could have

simultaneous access to imaging studies on monitors

throughout the hospital. This long-term digital archiving or

rapid transmission is prohibitive without the use of image

compression to reduce the file sizes.

As medical/biological imaging facilities move towards

complete film-less imaging, compression plays a key role.

Although lossy compression techniques yield high

compression rates, the medical community has been

reluctant to adopt these methods, largely for legal reasons,

and has instead relied on lossless compression techniques

that yield low compression rates. The true goal is to

maximize compression while maintaining clinical

relevance and balancing legal risk.

Now-a-days in medical field the digitized medical

information such as computed tomography (CT), magnetic

resonance imaging (MRI), generates increasingly

important volumes of data is an important challenge to deal

with is the storage, retrieval and transmission requirements

of enormous data, from one place to another place for

urgent purpose including medical images. Compression is

one of the indispensable techniques to solve this problem.

In this paper we offer a lossless compression method with

the segmentation for compression of medical images. In

this method the medical image is segmented and

compressed by wavelet method to increase the

compression ratio and to store in a less space. Here we use

the CT and MRI images and analyzed in detail.

Introduction:
Medical image compression:

There are two types of image compression: lossless and

lossy. With lossless compression, the original image is

recovered exactly after decompression. Unfortunately, with

images of natural scenes it is rarely possible to obtain

error-free compression at a rate beyond 2:1. Much higher

compression ratios can be obtained if some error, which is

usually difficult to perceive, is allowed between the

decompressed image and the original image. This is lossy

compression. In many cases, it is not necessary or even

desirable that there be error-free reproduction of the

original image. For example, if some noise is present, then

the error due to that noise will usually be significantly

reduced via some denoising method. In such a case, the

small amount of error introduced by lossy compression

may be acceptable. Another application where lossy

compression is acceptable is in fast transmission of still

images over the Internet.

Before the various image compression techniques are

discussed, consider the motivation behind using

compression. A typical 12-bit medical X-ray may be 2048

pixels by 2560 pixels in dimension. This translates to a file

size of 10,485,760 bytes. A typical 16-bit mammogram

image may be 4500 pixels by 4500 pixels in dimension for

a file size of 40,500,000 (40 megabytes)! This has

consequences for disk storage and image transmission

time. Even though disk storage has been increasing

steadily, the volume of digital imagery produced by

hospitals and their new film less radiology departments has

been increasing even faster. Even if there were infinite

storage, there is still the problem of transmitting the

images.

An image is a collection of measurements in two-

dimensional (2-D) or three-dimensional (3-D) space. In

medical images, these measurements or image intensities

can be radiation absorption in X-ray imaging, acoustic

pressure in ultrasound, or RF signal amplitude In MRI. If a

single easurement is made at each location in the image,

then the image is called a scalar image. With the growth of

technology and the entrance into the Digital Age, the world

has found itself amid a vast amount of information.

Dealing with such enormous amount of information can

often present difficulties. Digital information must be

stored and retrieved in an efficient manner, in order for it

to be put to practical use. Data compression is a fascinating

topic when considered by it.

Segmentation:
It refers to the process of partitioning a digital image into

multiple segments (sets of pixels, also known as super

pixels). The goal of segmentation is to simplify and/or

change the representation of an image into something that

is more meaningful and easier to analyze. Image

segmentation is typically used to locate objects and

boundaries (lines, curves, etc.) in images. More precisely,

R.Arun, Dr.D.Murugan /International Journal Of Computational Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |332-336 Page 333

image segmentation is the process of assigning a label to

every pixel in an image such that pixels with the same

label share certain visual characteristics

Region growing methods:

The first region growing method was the seeded region

growing method. This method takes a set of seeds as input

along with the image. The seeds mark each of the objects

to be segmented. The regions are iteratively grown by

comparing all unallocated neighboring pixels to the

regions. The difference between a pixel's intensity value

and the region's mean, δ, is used as a measure of similarity.

The pixel with the smallest difference measured this way is

allocated to the respective region. This process continues

until all pixels are allocated to a region.

Seeded region growing requires seeds as additional input.

The segmentation results are dependent on the choice of

seeds. Noise in the image can cause the seeds to be poorly

placed. Unseeded region growing is a modified algorithm

that doesn't require explicit seeds. It starts off with a single

region A1 – the pixel chosen here does not significantly

influence final segmentation. At each iteration it considers

the neighboring pixels in the same way as seeded region

growing. It differs from seeded region growing in that if

the minimum δ is less than a predefined threshold T then it

is added to the respective region Aj. If not, then the pixel is

considered significantly different from all current regions

Ai and a new region An + 1 is created with this pixel.

Block Diagram of Region Growing Algorithms

Compression Method:

3. Ezw Encoding
The EZW algorithm is based on four key concepts: 1) a

discrete wavelet transform or hierarchical sub band

decomposition, 2) prediction of the absence of significant

formation across scales by exploiting the self-similarity

inherent in images, 3) entropy-coded successive

approximation quantization, and 4) universal lossless data

compression which is achieved via adaptive Huffman

encoding. The EZW encoder was originally designed to

operate on images (2D-signals) but it can also be used on

other dimensional signals. The EZW encoder is based on

progressive encoding to compress an image into a bit

stream with increasing accuracy. This means that when

more bits are added to the stream, the decoded image will

contain more detail, a property similar to JPEG encoded

images. Using an embedded coding algorithm, an encoder

can

terminate the encoding at any point thereby allowing a

target rate or target accuracy to be met exactly. Also, given

a bit stream, the decoder can cease decoding at any point in

the bit stream and still produce exactly the same image that

would have been encoded at the bit rate

corresponding to the truncated bit stream. In addition to

producing a fully embedded bit stream, EZW consistently

produces compression results that are competitive with

virtually all known compression algorithm on standard test

images It is similar to the representation of a number

like π (pi). Every digit we add increases the accuracy of the

number, but we can stop at any accuracy we like.

Progressive encoding is also known as embedded

encoding, which explains the E in EZW.

Embedded zerotree wavelet (EZW) algorithm

The embedded zerotree wavelet algorithm (EZW) is a

simple, yet remarkable effective, image compression

algorithm, having the property that the bits in the bit

stream are generated in order of importance, yielding a

fully embedded code. Using an embedded coding

algorithm, an encoder can terminate the encoding at any

point thereby allowing a target rate or target distortion

metric to be met exactly. Also, given a bit stream, the

decoder can cease decoding at any point in the bit stream

and still produce exactly the same image that would have

been encoded at the bit rate corresponding to the truncated

stream. In addition to producing a fully embedded bit

stream, EZW consistently produces compression results

that are competitive with virtually all known compression

algorithms.

The algorithm

The EZW output stream will have to start with some

information to synchronize the decoder. The minimum

information required by the decoder is the number of

wavelet transform levels used and the initial threshold, if

we assume that always the same wavelet transform will be

used. Additionally we can send the image dimensions and

the image mean. Sending the image mean is useful if we

remove it from the image before coding. After imperfect

reconstruction the decoder can then replace the imperfect

mean by the original mean. This can increase the PSNR

significantly.

R.Arun, Dr.D.Murugan /International Journal Of Computational Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |332-336 Page 334

The first step in the EZW coding algorithm is to determine

the initial threshold. If we adopt bitplane coding then our

initial threshold t0 will be

Here MAX(.) means the maximum coefficient value in the

image and denotes the coefficient. With this

threshold we enter the main coding loop (I will use a C-

like language):

threshold = initial_threshold;

do

{

 dominant_pass(image);

 subordinate_pass(image);

 threshold = threshold/2;

}

while (threshold>minimum_threshold);

We see that two passes are used to code the image. In the

first pass, the dominant pass, the image is scanned and a

symbol is outputted for every coefficient. If the coefficient

is larger than the threshold a P (positive) is coded, if the

coefficient is smaller than minus the threshold an N

(negative) is coded. If the coefficient is the root of a

zerotree then a T (zerotree) is coded and finally, if the

coefficient is smaller than the threshold but it is not the

root of a zerotree, then a Z (isolated zero) is coded. This

happens when there is a coefficient larger than the

threshold in the subtree. The effect of using the N and P

codes is that when a coefficient is found to be larger than

the threshold (in absolute value or magnitude) its two most

significant bits are outputted (if we forget about sign

extension).

Note that in order to determine if a coefficient is the root of

a zerotree or an isolated zero, we will have to scan the

whole quad-tree. Clearly this will take time. Also, to

prevent outputting codes for coefficients in already

identified zerotrees we will have to keep track of them.

This means memory for book keeping.

Finally, all the coefficients that are in absolute value larger

than the current threshold are extracted and placed without

their sign on the subordinate list and their positions in the

image are filled with zeroes. This will prevent them from

being coded again.

The second pass, the subordinate pass, is the refinement

pass. In [Sha93] this gives rise to some juggling with

uncertainty intervals, but it boils down to outputting the

next most significant bit of all the coefficients on the

subordinate list. In [Sha93] this list is ordered (in such a

way that the decoder can do the same) so that the largest

coefficients are again transmitted first. Based on [Alg95]

we have not implemented this sorting here since the gain

seems to be very small but the costs very high.

The main loop ends when the threshold reaches a

minimum value. For integer coefficients this minimum

value equals zero and the divide by two can be replaced by

a shift right operation. If we add another ending condition

based on the number of outputted bits by the arithmetic

coder then we can meet any target bit rate exactly without

doing too much work.

We can summarize the above with the following code

fragments, starting with the dominant pass.

/*

 * Dominant pass

 */

initialize_fifo();

while (fifo_not_empty)

{

 get_coded_coefficient_from_fifo();

 if coefficient was coded as P, N or Z then

 {

 code_next_scan_coefficient();

 put_coded_coefficient_in_fifo();

 if coefficient was coded as P or N then

 {

 add abs(coefficient) to subordinate list;

 set coefficient position to zero;

 }

 }

}

Here we have used a FIFO to keep track of the identified

zerotrees. If we want to enter this loop we will have to

initialize the FIFO by “manually” adding the first quad-tree

root coefficients to the FIFO. Depending on which level

we start in the left of figure 2 this means coding and

putting at least three roots in the FIFO. The call of

code_next_scan_coefficient() checks the next uncoded

coefficient in the image, indicated by the scanning order

and outputs a P, N, T or Z. After coding the coefficient it

is put in the FIFO. This will automatically result in a

Morton scan order. Thus, the FIFO contains only

coefficients which have already been coded, i.e. a P, N, T

or Z has already been outputted for these coefficients.

Finally, if a coefficient was coded as a P or N we remove it

from the image and place it on the subordinate list.

This loop will always end as long as we make sure that the

coefficients at the last level, i.e. the highest subbands

(HH1, HL1 and LH1 in figure 2) are coded as zerotrees.

After the dominant pass follows the subordinate pass:

/*

http://www.polyvalens.com/blog/?page_id=13#refs
http://www.polyvalens.com/blog/?page_id=13#refs
http://www.polyvalens.com/blog/?page_id=13#refs
http://www.polyvalens.com/blog/?page_id=13#fig2
http://www.polyvalens.com/blog/?page_id=13#fig2

R.Arun, Dr.D.Murugan /International Journal Of Computational Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |332-336 Page 335

 * Subordinate pass

 */

subordinate_threshold = current_threshold/2;

for all elements on subordinate list do

{

 if (coefficient>subordinate_threshold)

 {

 output a one;

 coefficient = coefficient-subordinate_threshold;

 }

 else output a zero;

}

If we use thresholds that are a power of two, then the

subordinate pass reduces to a few logical operations and

can be very fast.

Zerotree data structure

A wavelet coefficient x is said to be insignificant with

respect to a given threshold T if |x|<T. The zerotree is based

on the hypothesis that if a wavelet coefficient at a coarse

scale is insignificant with respect to a threshold, then all

wavelet coefficients of the same orientation in the same

spatial location at the finer scale are likely to be

insignificant with respect to the same threshold. More

specifically, in a hierarchical subband system, with the

exception of the highest frequency subbands, ever

coefficient at a given scale can be related to a set of

coefficients at the next finer scale of similar orientation.

The coefficient at the coarse scale is called the parent, and

all coefficients corresponding to the same spatial location

at the next finer scale of similar orientation are called

children. Similar, we can define the concepts descendants

and ancestors.The data structure of the zerotree can be

visualized in Figure . Given a threshold T to determine

whether or not a coefficient is significant, a coefficient x is

said to be an element of a zerotree for the threshold T if

itself and all of its descendents are insignificant with

respect to the threshold T. Therefore, given a threshold,

any wavelet coefficient could be represented in one of the

four data types: zerotree root (ZRT), isolated zero (IZ) (it

is insignificant but its descendant is not), positive

significant (POS) and negative significant (NEG).

Dominant pass

Shapiro's algorithm creates rooted trees using a pixel of the

LL subband for the root of each tree and a specific order of

similarly positioned pixels from the other subbands for

children. There are two types of passes performed: a

dominant pass and a subordinate pass. The dominant pass

finds pixel values above a certain threshold, and the

subordinate pass quantizes all significant pixel values

found in this and all previous dominant passes previous.

A dominant pass checks all trees for significant pixel

values with respect to a certain threshold. The initial

threshold is chosen to be one-half of the maximum

magnitude of all pixel values. Subsequent dominant pass

thresholds are always one-half the previous pass threshold.

When an insignificant pixel value is found, and a check of

all it's children reveals that they too are insignificant, then

it is possible to encode that pixel and all it's children with

one symbol, a zerotree root, in place of a symbol for that

pixel and a symbol for each of that pixel's children, thus

achieving compression. Pixel values found to be significant

in the dominant pass are encoded with the symbol positive,

for a value greater than zero, or negative, for a value less

than zero, then those pixel values are added to a

subordinate list for quantization, and the pixel value in the

subband is then set to zero for the next dominant pass.

Pixel values found to be insignificant in the dominant pass

but with significant children are coded as isolated zeros.

So, the dominant passes map pixel values to a four symbol

alphabet which can then be further encoded by using an

adaptive arithmetic coder.

Subordinate pass

After each dominant pass, a subordinate pass is then

performed on the subordinate list which contains all pixel

values previously found to be significant. The subordinate

pass performs pixel value quantization which achieves

compression by telling the decoder with a symbol roughly

what the pixel value is instead of exactly what the pixel

value is. Since the initial threshold is one-half the

maximum magnitude of all pixel values for the first

dominant pass, then in the first subordinate pass only two

ranges are specified in which a significant pixel value

could lie: the upper half of the range between the

maximum pixel value and the initial threshold, or the lower

half of the same range. A pixel value in the upper half of

the range gets coded with the symbol upper (for upper part

of the range), while a pixel value in the lower half gets

coded with the symbol lower. A pixel value found to be in

a particular range is quantized, from the decoders

viewpoint, to the midpoint of that range. Upon subsequent

subordinate passes the threshold has been cut in half and so

there are twice as many ranges as the last subordinate pass

plus two new ranges corresponding to the new lower

threshold. By reading the subordinate symbol

corresponding to a significant pixel and knowing the

threshold, the decoder is able to determine the range in

R.Arun, Dr.D.Murugan /International Journal Of Computational Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |332-336 Page 336

which the pixel lies and reconstructs the pixel value to the

midpoint of that range. Thus from the decoders viewpoint

the rough estimate of a significant pixel's value is getting

more refined and accurate as more subordinate passes are

made. So, the subordinate passes quantize pixel values to a

two symbol alphabet which then get encoded by using an

adaptive arithmetic coder as described by Witten, Neal,

and Cleary, thus achieving compression.

Decoding

What is needed for decoding an image compressed by

Shapiro's algorithm is the initial threshold, the original

image size, the subband decomposition scale and, of

course, the encoded bit stream. The decoder then

decompresses the arithmetically encoded files into symbol

files, creates all the proper size subbands needed since it

knows the subband decomposition scale and the original

image size, and proceeds to undo the Shapiro compression

since it knows the initial threshold and the subband

scanning order.

An example

We use a two scale wavelet image as a simple to show the

algorithm. The original image is shown in Figure.

Conclusion:
In this paper we used the seeded region growing algorithm

for segmentation for segmenting the medical image and

EZW for compression method and the compression ratio is

high and the segmentation

Test Image Compression Ratio

Image1 11.78 34.03

Image2 13.84 33.39

References:
[3] A. Abu-Hajar and R. Shankar, “Enhanced Partial-

EZW for

Lossless Image Compression” Acoustics, Speech and

Signal processing 2003, Proceedings (ICASSP ‟03)

[9] Park, K., and Park, H.W.: „Region-of-interest coding

based on

set partitioning in hierarchical trees‟, IEEE Trans.

Circuits Syst.

Video Technol., 2002, 12, (2), pp. 106–11

[3] Yian-Leng Chang, Xiaobo Li, “Adaptive image

region-growing”, IEEE Transactions on Image

Processing, vol.3, no.6, Nov. 1994, pp.868-72.

[4] Rolf Adams and Leanne Bischof, “Seeded Region

Growing”, IEEE Transactions on Image processing,

Vol.16, No.6, June, 1994, pp.641-47

[5] Hojjatoleslami SA, Kittler J., “Region growing: a

new approach”, IEEE Transactions of Image

Processing, vol.7, no.7, July 1998, pp.1079-84.

