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Abstract: 

The easy, rapid, and reliable digital transmission and 

storage of medical and biomedical images would be a 

tremendous boon to the practice of medicine. Patients in 

rural areas could have convenient access to second 

opinions. Patients readmitted to hospitals could have 

earlier imaging studies instantly available. Rather than 

waiting for others to finish with hardcopy films, medical 

and surgical teams collaborating on patient care could have 

simultaneous access to imaging studies on monitors 

throughout the hospital. This long-term digital archiving or 

rapid transmission is prohibitive without the use of image 

compression to reduce the file sizes. 

As medical/biological imaging facilities move towards 

complete film-less imaging, compression plays a key role. 

Although lossy compression techniques yield high 

compression rates, the medical community has been 

reluctant to adopt these methods, largely for legal reasons, 

and has instead relied on lossless compression techniques 

that yield low compression rates. The true goal is to 

maximize compression while maintaining clinical 

relevance and balancing legal risk. 

 

Now-a-days in medical field the digitized medical 

information such as computed tomography (CT), magnetic 

resonance imaging (MRI), generates increasingly 

important volumes of data is an important challenge to deal 

with is the storage, retrieval and transmission requirements 

of enormous data, from one place to another place for 

urgent purpose including medical images. Compression is 

one of the indispensable techniques to solve this problem. 

In this paper we offer a lossless compression method with 

the segmentation for compression of medical images. In 

this method the medical image is segmented and 

compressed by wavelet method to increase the 

compression ratio and to store in a less space. Here we use 

the CT and MRI images and analyzed in detail. 

 

Introduction: 
Medical image compression: 

There are two types of image compression: lossless and 

lossy. With lossless compression, the original image is 

recovered exactly after decompression. Unfortunately, with 

images of natural scenes it is rarely possible to obtain 

error-free compression at a rate beyond 2:1. Much higher 

compression ratios can be obtained if some error, which is 

usually difficult to perceive, is allowed between the  

 

 

 

decompressed image and the original image. This is lossy 

compression. In many cases, it is not necessary or even 

desirable that there be error-free reproduction of the 

original image. For example, if some noise is present, then 

the error due to that noise will usually be significantly 

reduced via some denoising method. In such a case, the 

small amount of error introduced by lossy compression 

may be acceptable. Another application where lossy 

compression is acceptable is in fast transmission of still 

images over the Internet. 

Before the various image compression techniques are 

discussed, consider the motivation behind using 

compression. A typical 12-bit medical X-ray may be 2048 

pixels by 2560 pixels in dimension. This translates to a file 

size of 10,485,760 bytes. A typical 16-bit mammogram 

image may be 4500 pixels by 4500 pixels in dimension for 

a file size of 40,500,000 (40 megabytes)! This has 

consequences for disk storage and image transmission 

time. Even though disk storage has been increasing 

steadily, the volume of digital imagery produced by 

hospitals and their new film less radiology departments has 

been increasing even faster. Even if there were infinite 

storage, there is still the problem of transmitting the 

images. 

 

An image is a collection of measurements in two-

dimensional (2-D) or three-dimensional (3-D) space. In 

medical images, these measurements or image intensities 

can be radiation absorption in X-ray imaging, acoustic 

pressure in ultrasound, or RF signal amplitude In MRI. If a 

single easurement is made at each location in the image, 

then the image is called a scalar image. With the growth of 

technology and the entrance into the Digital Age, the world 

has found itself amid a vast amount of information. 

Dealing with such enormous amount of information can 

often present difficulties. Digital information must be 

stored and retrieved in an efficient manner, in order for it 

to be put to practical use. Data compression is a fascinating 

topic when considered by it. 

 

Segmentation:  
It refers to the process of partitioning a digital image into 

multiple segments (sets of pixels, also known as super 

pixels). The goal of segmentation is to simplify and/or 

change the representation of an image into something that 

is more meaningful and easier to analyze. Image 

segmentation is typically used to locate objects and 

boundaries (lines, curves, etc.) in images. More precisely, 
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image segmentation is the process of assigning a label to 

every pixel in an image such that pixels with the same 

label share certain visual characteristics 

Region growing methods: 

The first region growing method was the seeded region 

growing method. This method takes a set of seeds as input 

along with the image. The seeds mark each of the objects 

to be segmented. The regions are iteratively grown by 

comparing all unallocated neighboring pixels to the 

regions. The difference between a pixel's intensity value 

and the region's mean, δ, is used as a measure of similarity. 

The pixel with the smallest difference measured this way is 

allocated to the respective region. This process continues 

until all pixels are allocated to a region. 

Seeded region growing requires seeds as additional input. 

The segmentation results are dependent on the choice of 

seeds. Noise in the image can cause the seeds to be poorly 

placed. Unseeded region growing is a modified algorithm 

that doesn't require explicit seeds. It starts off with a single 

region A1 – the pixel chosen here does not significantly 

influence final segmentation. At each iteration it considers 

the neighboring pixels in the same way as seeded region 

growing. It differs from seeded region growing in that if 

the minimum δ is less than a predefined threshold T then it 

is added to the respective region Aj. If not, then the pixel is 

considered significantly different from all current regions 

Ai and a new region An + 1 is created with this pixel. 

Block Diagram of Region Growing Algorithms 

 

Compression Method: 

3. Ezw Encoding 
The EZW algorithm is based on four key concepts: 1) a 

discrete wavelet transform or hierarchical sub band 

decomposition, 2) prediction of the absence of significant 

formation across scales by exploiting the self-similarity 

inherent in images, 3) entropy-coded successive 

approximation quantization, and 4) universal lossless data 

compression which is achieved via adaptive Huffman 

encoding. The EZW encoder was originally designed to 

operate on images (2D-signals) but it can also be used on 

other dimensional signals. The EZW encoder is based on 

progressive encoding to compress an image into a bit 

stream with increasing accuracy. This means that when 

more bits are added to the stream, the decoded image will 

contain more detail, a property similar to JPEG encoded 

images. Using an embedded coding algorithm, an encoder 

can  

terminate the encoding at any point thereby allowing a 

target rate or target accuracy to be met exactly. Also, given 

a bit stream, the decoder can cease decoding at any point in 

the bit stream and still produce exactly the same image that 

would have been encoded at the bit rate 

corresponding to the truncated bit stream. In addition to 

producing a fully embedded bit stream, EZW consistently 

produces compression results that are competitive with 

virtually all known compression algorithm on standard  test 

images It is similar to the representation of a number 

like π (pi). Every digit we add increases the accuracy of the 

number, but we can stop at any accuracy we like. 

Progressive encoding is also known as embedded 

encoding, which explains the E in EZW. 

Embedded zerotree wavelet (EZW) algorithm  

The embedded zerotree wavelet algorithm (EZW) is a 

simple, yet remarkable effective, image compression 

algorithm, having the property that the bits in the bit 

stream are generated in order of importance, yielding a 

fully embedded code. Using an embedded coding 

algorithm, an encoder can terminate the encoding at any 

point thereby allowing a target rate or target distortion 

metric to be met exactly. Also, given a bit stream, the 

decoder can cease decoding at any point in the bit stream 

and still produce exactly the same image that would have 

been encoded at the bit rate corresponding to the truncated 

stream. In addition to producing a fully embedded bit 

stream, EZW consistently produces compression results 

that are competitive with virtually all known compression 

algorithms. 

The algorithm 

The EZW output stream will have to start with some 

information to synchronize the decoder. The minimum 

information required by the decoder is the number of 

wavelet transform levels used and the initial threshold, if 

we assume that always the same wavelet transform will be 

used. Additionally we can send the image dimensions and 

the image mean. Sending the image mean is useful if we 

remove it from the image before coding. After imperfect 

reconstruction the decoder can then replace the imperfect 

mean by the original mean. This can increase the PSNR 

significantly. 
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The first step in the EZW coding algorithm is to determine 

the initial threshold. If we adopt bitplane coding then our 

initial threshold t0 will be 

 

Here MAX(.) means the maximum coefficient value in the 

image and denotes the coefficient. With this 

threshold we enter the main coding loop (I will use a C-

like language): 

threshold = initial_threshold; 

do 

{ 

  dominant_pass(image); 

  subordinate_pass(image); 

  threshold = threshold/2; 

} 

while (threshold>minimum_threshold); 

We see that two passes are used to code the image. In the 

first pass, the dominant pass, the image is scanned and a 

symbol is outputted for every coefficient. If the coefficient 

is larger than the threshold a P (positive) is coded, if the 

coefficient is smaller than minus the threshold an N 

(negative) is coded. If the coefficient is the root of a 

zerotree then a T (zerotree) is coded and finally, if the 

coefficient is smaller than the threshold but it is not the 

root of a zerotree, then a Z (isolated zero) is coded. This 

happens when there is a coefficient larger than the 

threshold in the subtree. The effect of using the N and P 

codes is that when a coefficient is found to be larger than 

the threshold (in absolute value or magnitude) its two most 

significant bits are outputted (if we forget about sign 

extension). 

Note that in order to determine if a coefficient is the root of 

a zerotree or an isolated zero, we will have to scan the 

whole quad-tree. Clearly this will take time. Also, to 

prevent outputting codes for coefficients in already 

identified zerotrees we will have to keep track of them. 

This means memory for book keeping. 

Finally, all the coefficients that are in absolute value larger 

than the current threshold are extracted and placed without 

their sign on the subordinate list and their positions in the 

image are filled with zeroes. This will prevent them from 

being coded again. 

The second pass, the subordinate pass, is the refinement 

pass. In [Sha93] this gives rise to some juggling with 

uncertainty intervals, but it boils down to outputting the 

next most significant bit of all the coefficients on the 

subordinate list. In [Sha93] this list is ordered (in such a 

way that the decoder can do the same) so that the largest 

coefficients are again transmitted first. Based on [Alg95] 

we have not implemented this sorting here since the gain 

seems to be very small but the costs very high. 

The main loop ends when the threshold reaches a 

minimum value. For integer coefficients this minimum 

value equals zero and the divide by two can be replaced by 

a shift right operation. If we add another ending condition 

based on the number of outputted bits by the arithmetic 

coder then we can meet any target bit rate exactly without 

doing too much work. 

We can summarize the above with the following code 

fragments, starting with the dominant pass. 

/* 

 * Dominant pass 

 */ 

initialize_fifo(); 

while (fifo_not_empty) 

{ 

  get_coded_coefficient_from_fifo(); 

  if coefficient was coded as P, N or Z then 

  { 

    code_next_scan_coefficient(); 

    put_coded_coefficient_in_fifo(); 

    if coefficient was coded as P or N then 

    { 

      add abs(coefficient) to subordinate list; 

      set coefficient position to zero; 

    } 

  } 

} 

Here we have used a FIFO to keep track of the identified 

zerotrees. If we want to enter this loop we will have to 

initialize the FIFO by “manually” adding the first quad-tree 

root coefficients to the FIFO. Depending on which level 

we start in the left of figure 2 this means coding and 

putting at least three roots in the FIFO. The call of 

code_next_scan_coefficient() checks the next uncoded 

coefficient in the image, indicated by the scanning order 

and outputs a P, N, T or Z. After coding the coefficient it 

is put in the FIFO. This will automatically result in a 

Morton scan order. Thus, the FIFO contains only 

coefficients which have already been coded, i.e. a P, N, T 

or Z has already been outputted for these coefficients. 

Finally, if a coefficient was coded as a P or N we remove it 

from the image and place it on the subordinate list. 

This loop will always end as long as we make sure that the 

coefficients at the last level, i.e. the highest subbands 

(HH1, HL1 and LH1 in figure 2) are coded as zerotrees. 

After the dominant pass follows the subordinate pass: 

 

/* 

http://www.polyvalens.com/blog/?page_id=13#refs
http://www.polyvalens.com/blog/?page_id=13#refs
http://www.polyvalens.com/blog/?page_id=13#refs
http://www.polyvalens.com/blog/?page_id=13#fig2
http://www.polyvalens.com/blog/?page_id=13#fig2


R.Arun, Dr.D.Murugan /International Journal Of Computational Engineering Research / ISSN: 2250–3005 

 

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |332-336                                                                      Page 335 

 

 * Subordinate pass 

 */ 

subordinate_threshold = current_threshold/2; 

for all elements on subordinate list do 

{ 

  if (coefficient>subordinate_threshold) 

  { 

    output a one; 

    coefficient = coefficient-subordinate_threshold; 

  } 

  else output a zero; 

} 

If we use thresholds that are a power of two, then the 

subordinate pass reduces to a few logical operations and 

can be very fast. 

Zerotree data structure  

A wavelet coefficient x is said to be insignificant with 

respect to a given threshold T if |x|<T. The zerotree is based 

on the hypothesis that if a wavelet coefficient at a coarse 

scale is insignificant with respect to a threshold, then all 

wavelet coefficients of the same orientation in the same 

spatial location at the finer scale are likely to be 

insignificant with respect to the same threshold. More 

specifically, in a hierarchical subband system, with the 

exception of the highest frequency subbands, ever 

coefficient at a given scale can be related to a set of 

coefficients at the next finer scale of similar orientation. 

The coefficient at the coarse scale is called the parent, and 

all coefficients corresponding to the same spatial location 

at the next finer scale of similar orientation are called 

children. Similar, we can define the concepts descendants 

and ancestors.The data structure of the zerotree can be 

visualized in Figure . Given a threshold T to determine 

whether or not a coefficient is significant, a coefficient x is 

said to be an element of a zerotree for the threshold T if 

itself and all of its descendents are insignificant with 

respect to the threshold T. Therefore, given a threshold, 

any wavelet coefficient could be represented in one of the 

four data types: zerotree root (ZRT), isolated zero (IZ) (it 

is insignificant but its descendant is not), positive 

significant (POS) and negative significant (NEG).  

 

Dominant pass  

Shapiro's algorithm creates rooted trees using a pixel of the 

LL subband for the root of each tree and a specific order of 

similarly positioned pixels from the other subbands for 

children. There are two types of passes performed: a 

dominant pass and a subordinate pass. The dominant pass 

finds pixel values above a certain threshold, and the 

subordinate pass quantizes all significant pixel values 

found in this and all previous dominant passes previous.  

A dominant pass checks all trees for significant pixel 

values with respect to a certain threshold. The initial 

threshold is chosen to be one-half of the maximum 

magnitude of all pixel values. Subsequent dominant pass 

thresholds are always one-half the previous pass threshold. 

When an insignificant pixel value is found, and a check of 

all it's children reveals that they too are insignificant, then 

it is possible to encode that pixel and all it's children with 

one symbol, a zerotree root, in place of a symbol for that 

pixel and a symbol for each of that pixel's children, thus 

achieving compression. Pixel values found to be significant 

in the dominant pass are encoded with the symbol positive, 

for a value greater than zero, or negative, for a value less 

than zero, then those pixel values are added to a 

subordinate list for quantization, and the pixel value in the 

subband is then set to zero for the next dominant pass. 

Pixel values found to be insignificant in the dominant pass 

but with significant children are coded as isolated zeros. 

So, the dominant passes map pixel values to a four symbol 

alphabet which can then be further encoded by using an 

adaptive arithmetic coder.  

Subordinate pass  

After each dominant pass, a subordinate pass is then 

performed on the subordinate list which contains all pixel 

values previously found to be significant. The subordinate 

pass performs pixel value quantization which achieves 

compression by telling the decoder with a symbol roughly 

what the pixel value is instead of exactly what the pixel 

value is. Since the initial threshold is one-half the 

maximum magnitude of all pixel values for the first 

dominant pass, then in the first subordinate pass only two 

ranges are specified in which a significant pixel value 

could lie: the upper half of the range between the 

maximum pixel value and the initial threshold, or the lower 

half of the same range. A pixel value in the upper half of 

the range gets coded with the symbol upper (for upper part 

of the range), while a pixel value in the lower half gets 

coded with the symbol lower. A pixel value found to be in 

a particular range is quantized, from the decoders 

viewpoint, to the midpoint of that range. Upon subsequent 

subordinate passes the threshold has been cut in half and so 

there are twice as many ranges as the last subordinate pass 

plus two new ranges corresponding to the new lower 

threshold. By reading the subordinate symbol 

corresponding to a significant pixel and knowing the 

threshold, the decoder is able to determine the range in 
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which the pixel lies and reconstructs the pixel value to the 

midpoint of that range. Thus from the decoders viewpoint 

the rough estimate of a significant pixel's value is getting 

more refined and accurate as more subordinate passes are 

made. So, the subordinate passes quantize pixel values to a 

two symbol alphabet which then get encoded by using an 

adaptive arithmetic coder as described by Witten, Neal, 

and Cleary, thus achieving compression.  

Decoding  

What is needed for decoding an image compressed by 

Shapiro's algorithm is the initial threshold, the original 

image size, the subband decomposition scale and, of 

course, the encoded bit stream. The decoder then 

decompresses the arithmetically encoded files into symbol 

files, creates all the proper size subbands needed since it 

knows the subband decomposition scale and the original 

image size, and proceeds to undo the Shapiro compression 

since it knows the initial threshold and the subband 

scanning order.  

An example  

We use a two scale wavelet image as a simple to show the 

algorithm. The original image is shown in Figure.  

 

 

Conclusion: 
In this paper we used the seeded region growing algorithm 

for segmentation for segmenting the medical image and 

EZW for compression method and the compression ratio is 

high and the segmentation  

 

 

 

 

 

 

 

 

 

 

Test Image Compression Ratio  

 

Image1 11.78 34.03 

Image2 13.84 33.39 
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