A Computer Program for Sizing and Performance Evaluation of Reciprocating Process Gas Compressors

Tonye K. Jack

Department of Mechanical Engineering, University of Port Harcourt, Port Harcourt, Nigeria

ABSTRACT

Delivering gas to final header storage tanks or end user locations require the use of pipelines and a means of transporting the gas through the lines. A gas compressor is employed satisfactorily to such needs. Gas compressor types vary (from the dynamic type to the positive displacement type) and which to apply for a particular service requirement will depend on the process conditions. For high pressure delivery, and low gas flow volume process conditions, the positive displacement type of reciprocating compressors is often the choice. Matching the compressor equipment manufacturer's available equipment designs to the various process conditions involves several parameters and requires a detailed selection process conducted by the Engineer. A computer program in Microsoft ExcelTM to handle the selection process is described here, with the equations to develop one.

KEYWORDS COMPRESSORS, COMPRESSOR SELECTION, ENGINEERING WITH MICROSOFT EXCEL, GAS COMPRESSOR SIZING, PERFORMANCE EVALUATION OF COMPRESSORS, RECIPROCATING COMPRESSOR SELECTION.

1. INTRODUCTION

The standard practice in the industry application of compressors is to apply positive displacement Reciprocating type Compressors for low flows usually within limits of about 900 cubic metres per minute (m^3/min) . Over and above this, the dynamic design Centrifugal type Compressors is the choice by most equipment owners. Reciprocating Compressor Equipment Manufacturers, design various sizes to meet with the variable process conditions. Designs are of two types - Single acting cylinder or a double acting piston. Single acting units are often applied in low gas power of less than 15 kW [1]. In the dual-acting design, compression occurs either when the piston moves on the inward stroke, toward the crankshaft, or outward stroke, away from the crankshaft. Thus, compression occurs on both sides of the piston. For better operational stability and to minimise dynamic loads in operation, a variant of the double-acting with opposed cylinder-piston connection of equal sizes, in pairs, arranged horizontally and connected to a common shaft called a Tandem cylinder arrangement, allows for load balancing. Such units are usually applied to handle larger gas compression requirements and are made up of two or more stages of compression, with each stage being a cylinder-piston connection.

Equipment Sizing or Selection for a Reciprocating Compressor is on a stage-by-stage evaluation basis. Important Considerations in such analysis as stated by [1, 2] will include amongst others:

- a. Temperature rise across a stage
- b. Frame or Piston rod loading
- c. Total pressure rise across a stage
- d. Valve design and losses

2. MATHEMATICAL RELATIONSHIPS FOR RECIPROCATING COMPRESSORS

2.1. Overall Compression ratio

$$r_c = \frac{P_2}{P_1}$$

(1)

 P_2 = Discharge or Final Delivery Pressure (bar) P_1 = Suction Pressure (bar)

Knowledge of overall or total compression ratio, r_c , i.e. the ratio of the final delivery pressure to the initial suction pressure, is a guide to first estimation of the number of stages, with corrections being made based on temperature rise limitations. Neerken [1] advises to limit compression ratio for a stage to ≤ 3.5 .

2.2. Gas Properties and Specific Heat Ratio

Gas for compression can be a single gas or a mixture made up of several gases. A gas analysis is usually conducted to determine mixture properties. A good program development guide is to have a stored database of critical properties of different gases as shown from the selection taken from [3]. Selection can then be made with a combo button. With knowledge of the percentage by volume of the gases, a mole percentage analysis can be conducted to obtain the final mixture properties. Gas Mixture analysis is handled by the method outlined in section 2.28.

The ratio of specific heats, k, is obtained from the table of specific heats at constant pressure taken at two temperature values [3].

(2)

 $k = \frac{C_p}{C_v} = \frac{C_{pmix}}{(C_{pmix} - 8.314)}$ C_p = Specific heat at constant pressure C_v = Specific heat at constant volume C_{pmix} = Gas mixture specific heat

Proper estimation of the value of the ratio of specific heats, k, should be based on average of the values at suction and discharge, k_{ave} . Linear interpolation and extrapolation is applied to obtain the mid-point and out of range value for temperature falling between and outside the ratios of specific heats, k, in the database. Thus,

$$k_{ave} = k_0 + \frac{T_{ave} - 0}{100} \left(k_{100} - k_0 \right)$$
Or
(3)

$$k_{ave} = \frac{C_{p-ave}}{C_{p-ave} - 8.314} = \frac{C_{p-0}}{C_{p-0} - 8.314} + \frac{T_{ave} - 0}{100} \left(\frac{C_{p-100}}{C_{p-100} - 8.314} - \frac{C_{p-0}}{C_{p-0} - 8.314} \right)$$
(4)

Where, T_{ave} = Average temperature (K)

$$T_{ave} = \frac{T_d + T_s}{2} \tag{5}$$

 $T_d = Discharge temperature (K)$

 $T_s =$ Suction temperature (K)

Chemical Compound	Chemical Formula	Molecular Weight, Mw	Specific of heat ratio, k	Pc (bar)	Tc (0 ⁰ C)	Cp at 0 ⁰ C	Cp at 100 ⁰ C	Acentric Factor, w
Methane	CH4	16.04	1.31	46.4	191.1	34.5	40.13	0.0115
Ethane	C2H5	30.07	1.19	30.07	305.4	49.49	62.14	0.0908
Propane	C3H8	44.097	1.13	42.6	370	68.34	88.68	0.1454
Carbon	CO2	44.01	1.3	73.8	304.1	36.04	40.08	0.225
Dioxide								
Ethylene	C2H2	28.05	1.24	51.2	283.3	40.9	51.1	0.089

Table 1: Gas .Critical Properties

Source: Gresh [3]

2.3. Relative Density and Density of gas

$$\gamma_{sp.gr} = \frac{M_{w-gas}}{M_{w-air}} = \frac{\rho_{gas}}{\rho_{air}}$$

2.4. Loss Factor

Frictional losses in the pistons and rings, piston rod packing, pulsations due to gas surge effects, and oscillations of valves are often accounted for using one of several methods. Scheel [2] suggest that estimates of Pulsation or Pulse Damper Loss be made in line with:

Pulsation or Pulse Damper Loss = 1% of absolute pressure at suction and discharge

Mak [4] has provided a curve fit relationship of the Ludwig loss factor, L_o , curve as a function of the pressure ratio, given by equation (8):

$$L_{0} = -0.002188 r_{c}^{7} + 0.05778 r_{c}^{6} - 0.6356 r_{c}^{5} + 3.7711 r_{c}^{4} - 13.036 r_{c}^{3} + 26.331 r_{c}^{2} - 29.019 r_{c} + 14.929 r_{c}^{6} + 14.$$

The Scheel [2] method is applied in the program.

2.5. Approximate Compression Ratio per Stage

$$r_{c-stg.} = r_c^{\left(\frac{1}{N_{stg}}\right)}$$

Where, $N_{stg.} = Number of stages$

 r_{c-stg} = compression ratio per stage

It was stated earlier that, Single cylinder applications are for low pressure ratios. For high pressure applications, multistage units are the choice to cope with the temperature variations required for efficient performance delivery. The overall compression and hence compression ratio is shared into a number of stages in line with equation (9) to allow for equal work in each stage. Such multistage units often have intercoolers between each stage [1, 5].

2.6. Suction Pressure per Stage

Accounting for the pulsation loss, the corrected suction pressure per stage is:

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |395-402

(6)

(9)

(7)

(10)

(13)

2.7. Approximate Discharge Pressure per Stage

$P_{d-stg.} = (r_{c-stg.})(P_s)$	(11)
2.8. Inter-stage Pressure Drop	
$P_{i-drop} \cong 0.1 \left(P_{d-stg.} \right)^{0.7}$	(12)

Gas cooling between stages necessitates, making allowance for the pressure drop in the intercoolers [1]. In selecting compression ratios for a system unit, this is to be considered and adjustments made to computation of the actual discharge pressure in line with equation (12).

2.9. Actual Discharge Pressure

 $P_s = P_1 - PulsationLoss$

Actual discharge pressure will require that the inter-stage pressure drop be accounted for by adjusting the approximate discharge pressure which is a function of the adjusted suction pressure due to the pulsation losses, and the approximate stage compression ratio. This is given by equation (13):

$$P_{d-actual} = P_{d-stg.} + P_{i-drop}$$

2.10. Actual Compression Ratio per Stage

$$r_{c-actual} = \frac{P_{d-actual}}{P_{c}} \tag{14}$$

Optimum gas power is achieved when compression ratios in each of the stages are equal for multistage units. However, limits on the gas power capacity of individual cylinders, makes it impossible to obtain equal and hence, balanced compression ratios [6].

2.11. Suction Valve Loss Experienced in Filling Cylinder

$$\theta_s = (aU)^2 \left[\frac{M_w}{10^4 T_1} \right] \tag{15}$$

Where.

 θ_s = Suction valve loss

a = Piston/valve area ratio

U = Average piston speed in metre per second (m/s)

 $M_w = Gas$ Molecular weight

 T_1 = Suction temperature in Kelvin (K)

Scheel [2] gives Piston/Valve area ratio values between 8 and 12 for modern compressors. The Piston/valve area ratio is dependent on the pressures to be handled and valve opening lift, with higher pressures requiring lower valve lifts. Equally, lower Piston/valve area ratio requires a high lift valve. For good design practice [2] suggests an average value of 10. For air and lighter gases, a piston/valve area ratio of 13 is recommended.

2.12. Required Mean Pressure to Exhaust the Cylinder Displacement

$ heta_d = rac{ heta_s}{r_c^{(k-1/k)}}$	(16)
2.13. Average Piston Speed	
U = 2NL	(17)
U = Piston speed in metre per minute (m/min)	
L = Piston Stroke, in metre (m)	
N = Design rotating Speed, in RPM	
2.14. Intrinsic Correction Factor	
$B = \frac{\left(1 + \theta_d\right)}{\left(1 - \theta_s\right)}$	(18)

The intrinsic correction factor, B, extends the normal compression ratio, r_c , to represent the actual effective, compression ratio, $r_{c-actual}$, within the cylinder [2].

2.15. Compression Efficiency

This is the ratio of adiabatic efficiency to mechanical efficiency and given by equation (19)

$$\eta_{c} = \frac{\left[r_{c}^{(k-1/k)} - 1\right]}{\left[Br_{c}^{(k-1/k)} - 1\right]}$$
(19)

2.16. Suction Inlet Capacity to the Stage

$$Q_s = \frac{Q_{std.}}{60x24} \times \frac{P_{std.}}{P_s} \times \frac{T_s}{T_{std}} \times \frac{Z_s}{1.0}$$

Standard pressure and temperature have been set by the international committee on weights and measures [7]. For metric standards, the following values apply:

(20)

$$\begin{split} P_{std.} &= atmospheric \ pressure \approx 1.01325 \ bar \\ T_{std.} &= standard \ temperature = 293.15 \ K \ (20 \ deg \ C) \end{split}$$

These values are applied in the program.

This is also the standard adopted by the American Society of Mechanical Engineers (ASME) Power Test Codes Committee [7].

An alternate value adopted by other Engineering standardisation bodies such as the American Gas Association (AGA) is 288.15 K (15 deg C) [7].

 $Q_{std.}$ = Inlet Capacity volume at *standard condition* (*scmd- standard cubic metre per day or m³/day*) Q_s = Inlet Capacity volume at *inlet condition* (m^3/min)

 $P_s = inlet pressure (bar)$

 $T_s = inlet temperature (K)$

 $Z_s = Compressibility at inlet$

2.17. Mass Flow

The mass flow rate or weight flow of the gas is defined by the equation (21):

 $M = \frac{Q}{v} = \rho_{gas} Q \tag{21}$ Where,

$$\begin{split} M &= Mass \ flow \ rate \ of \ gas \ (kg/min) \\ Q &= Volume \ flow \ rate \ (m^3/min) \\ \nu &= Specific \ volume \ of \ gas \ (m^3/kg) = 1/\rho_{gas} \end{split}$$

2.18. Specific Volume

$$v = \frac{ZRT}{P}$$
(22)

Where, Z = Gas Compressibility R = Gas Constant = $8314/M_w$ $M_w = Gas$ Molecular Weight

2.19. Adiabatic Head of Compression

$$H_{ad} = Z_{av} RT \left(\frac{k}{k-1}\right)_1 \left[r_c^{\left(k-\frac{1}{k}\right)} - 1\right]$$
(23)

 H_{ad} = adiabatic head of compression (kN.m/kg)

 Z_{av} = average gas compressibility at suction and discharge

Note that the adiabatic head equation (23) is also applied on a stage-by-stage basis.

2.20. Compression Power

$$GP = \frac{MH_{AD}}{\eta_C}$$

$$GP = \text{Compression Power or Gas Power (kW)}$$
(24)

2.21. Volumetric Efficiency

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |395-402

$\varepsilon_{v} = 0.97 - C_{c} \left[\frac{r_{c}^{(1/k)}}{\left(\frac{Z_{2}}{Z} \right)^{2}} \right]$	$\left[\begin{array}{c} -1\\ r_1 \end{array}\right]$ (25)
--	---

Volumetric efficiency, $\varepsilon_{\nu_{i}}$ defined as the amount of gas volume displaced with each stroke of the piston, decreases with an increase in compression ratio [2], [6].

The retained volume at the end of a piston stroke is the Cylinder clearance, C_c , expressed as a percentage of the swept volume and is usually provided by compressor equipment manufacturers. Scheel [2] gives a minimum clearance value of about 10 %. Suggested value is within the range of 10 % to 15 % for equipment selection purposes [1].

2.22. Cylinder Displacement Required

$$C_{dis} = \frac{Q_s}{\varepsilon}$$
(26)

2.23. Cylinder Diameter

Cylinder diameter, D, is based on the area of the Head-end.

$$D = \sqrt{\left(\frac{4A_{he}}{\pi}\right)} \tag{27}$$

2.24. Area of Head-end

$$A_{he} = \frac{\pi D^2}{4} \tag{28}$$

Where, $A_{he} = Area \text{ of Head-end } (m^2)$ D = cylinder diameter (mm or m)

2.25. Area of Crank-end

$$A_{ce} = A_{he} - \left(\frac{\pi d^2}{4}\right) \tag{29}$$

Where, d = piston rod size diameter (mm or m) A_{ce} = Area of Crank-end (m²)

2.26. Frame Load in Compression

Frame loads are the maximum permissible forces that can be sustained due to the pressures acting on the piston.

 $F_{LC} = P_d A_{he} - P_s A_{ce}$ $F_{LC} = \text{frame load in compression (N)}$ (30)

2.27. Frame Load in Tension

$$F_{LT} = P_s A_{he} - P_d A_{ce}$$

$$F_{LT} = \text{frame load in tension (N)}$$
(31)

2.28. Compressibility Calculation by Redlich-Kwong Equation of State

The calculation of compressibility factor based on the Redlich-Kwong Equation of State (EoS) – Corresponding State Method can be defined by the functional relationship, $Z=f(T_r, P_r)$. Results were within reasonable accuracy. The Redlich-Kwong Corresponding State EoS is of the form given by Edmister [8]:

$$Z^{3} - Z^{2} + \left[\frac{\Omega_{a}P_{r}}{T_{r}^{2.5}} - \frac{\Omega_{b}P_{r}}{T_{r}}\left(1 + \frac{\Omega_{b}P_{r}}{T_{r}}\right)\right]Z - \frac{\Omega_{a}\Omega_{b}P_{r}^{2}}{T_{r}^{3.5}} = 0$$
(32)
Where,

$$\begin{split} \Omega_{a} &= 0.42748\\ \Omega_{b} &= 0.08664\\ P_{r} &= Reduced \ pressure = P/P_{c}\\ T_{r} &= Reduced \ temperature = T/T_{c} \end{split}$$

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |395-402

 P_c = Critical Pressure (bar) T_c = Critical Temperature (K)

2.28.1. Solution to the Redlich-Kwong Cubic Compressibility Equation

A number of methods are available for solving cubic polynomial equations [7, 8]. The method of solution using Microsoft ExcelTM is based on the built-in interpolation search solution methods – the Newton method and the Conjugate Gradient method. Noting that the equation (32) is written in a solution form, i.e. the left-hand side equals zero. Using the Solver Add-in option dialog box under the Tools menu, the desired constraints can be set as follows:

Set Target Cell: Equal To: Subject to: Guess value:

The Microsoft Excel TM Goal Seek option can also be applied as a solution method, with care being exercised to avoid having circular references – repeated recalculation of particular cell values as input and output.

2.28.2. Handling Gas Mixture

Gas Mixture analysis with the Redlich-Kwong Equation of State is conducted in line with the relations [8]:

$$\frac{T_{cm}}{P_{cm}} = \sum_{i}^{N} x_{i} \left(\frac{T_{ci}}{P_{ci}} \right)$$
(33)
$$\frac{T_{cm}^{2.5}}{P_{cm}} = \left[\sum_{i}^{N} x_{i} \left(\frac{T_{ci}^{1.25}}{P_{ci}^{0.5}} \right) \right]^{2}$$
(34)
$$T_{cm} = \left\{ \frac{\left[\sum_{i}^{N} x_{i} \left(\frac{T_{ci}^{1.25}}{P_{ci}} \right) \right]}{\sum_{i}^{N} x_{i} \left(\frac{T_{ci}}{P_{ci}} \right)} \right\}^{\frac{2}{3}}$$
(35)
$$P_{cm} = T_{cm}$$
(36)

$$P_{cm} = \frac{I_{cm}}{\sum_{i}^{N} x_i \left(\frac{T_{ci}}{P_{ci}}\right)}$$

 T_{cm} = Mixture Critical Temperature (K) P_{cm} = Mixture Critical Pressure (bar) T_{ci} = Individual gas Critical Temperature (K) P_{ci} = Individual gas Critical Pressure (bar) x_i = mol percent or percent by volume of each gas

3. PRACTICAL APPLICATION EXAMPLE WITH PROGRAM INPUT/OUTPUT

Estimate the sizing and performance requirements for a new compressor application in which 116808 m^3/day of a gas mixture is to be compressed in a 3-stage Reciprocating Compressor. The given data are:

Initial Suction Pressure = 14.3 bar absolute Final Discharge Pressure = 130 bar absolute

1 able 1	: Example stage	1	
	1 st stage	2 nd stage	3 rd stage
Cylinder clearance (%)	15	15	15
Piston/Valve area ratio	10	10	10
Suction temperature (deg. C)	38	38	38

 Table 1: Example stage specification

Design Requirements: Initial suction pressure drop = 1% Final pressure drop = 1% Number of cylinders per stage = 1

Stroke length = 450 mm Piston rod size = 12.5 mm Desired operating speed = 277 rpm The gas mixture consists of the following composition:

Tonye K. Jack International Journal Of Computational Engineering Research / ISSN: 2250–3005

	inture composition
Component	mole percent (%)
Methane	76
Ethane	8
Propane	2
n-Butane	1
n-Pentane	1
Air	1
Hydrogen	5
Carbon Monoxide	2
Carbon dioxide	3
Hydrogen Sulphide	1

Table 2: A Gas Mixture Composition

Reciprocating Compressor Performance a	nd Sizing C	Calculations									
NPUT DATA:						Gas Prope	rtles (Cri	itical Data) Specif	ication		
					gas select						
niet capacity M3/day	116808				buttons		mole %	Gas type	Mw	Pc, Bara	Tc. K
Suction Pressure bara	14.3							Methane	16.04	46.4	191.1
Suction Temperature deg C	38	38	38					Ethane	30 07	48.8	305.4
Discharge Pressure bara	130							Propane	44.097	42.6	370
Cylinder Clearance (specify for all 3-stages) %	15	15	15					n-Butane	58.124	38	425.2
Piston/Valve area ratio	10	10	10				1.00	n-Pentane	72.15	33.7	470 6
Desired Operating Speed rpm	277						1.00	Air	28.966	37.7	132.6
Stroke mm	450			1. S. S.			5.00	Hydrogen	2.016	13	33.3
Piston rod size mm	12.5	1					2.00	Carbon monoxide	28.01	35	132.9
Number of cylinders per stage	1							Carbon dioxide	44.01	73.8	304.1
Design Requirements:								Hydrogen sulphide	34.08	90	373.9
initial suction pressure drop %	and a state of			1.				undefined	1	1	1
	-						Real fr	undefined	1	1	1
final pressure drop %	1.5576521			1			Salar Mark	undefined	1	1	1
OUTPUT DATA:		Compress	r Performan	Ico Poor	iramonte						
		compresso	renorman	ice Requ	mements						
Gas Constant, R	428.72										
Overall Compression Ratio	9.27										
Molecular Weight, Mw Critical Pressure,	19.39										
Critical Pressure.	207.13										
		distant and the second		A Contraction of the							
		Chana 4	10	Plana 2 I	And the second second	Chana 2					
	Units	Stage 1	3	Stage 2		Stage 3					
Ratio of Specific heat, k		1.289		1.289		1.289					
Ratio of Specific heat, k Pulse Damper loss	Units bar	1.289 0.143		1.289 ot defined		1.289 1.300		<u>`</u>			
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio		1.289 0.143 0.224		1.289 ot defined 0.224		1.289 1.300 0.224					
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio		1.289 0.143		1.289 ot defined		1.289 1.300					
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage	bar	1.289 0.143 0.224 2.101		1.289 ot defined 0.224 2.101		1.289 1.300 0.224 2.101					
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage	bar bara	1.289 0.143 0.224 2.101 		1.289 ot defined 0.224 2.101 62.493		1.289 1.300 0.224 2.101 131.300					
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage	bar bara bara	1.289 0.143 0.224 2.101 29.744 14.157		1.289 ot defined 0.224 2.101 62.493 29.744		1.289 1.300 0.224 2.101 131.300 62.493					
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop	bar bara	1.289 0.143 0.224 2.101 		1.289 ot defined 0.224 2.101 62.493		1.289 1.300 0.224 2.101 131.300					×.
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Pressure	bar bara bara bara	1.289 0.143 0.224 2.101 29.744 14.157 1.075		1.289 ot defined 0.224 2.101 62.493 29.744 1.808		1.289 1.300 0.224 2.101 131.300 62.493 0.000					-
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Pressure Actual compression ratio/stage	bar bara bara bara	1.289 0.143 0.224 2.101 29.744 14.157 1.075 30.819		1.289 ot defined 0.224 2.101 62.493 29.744 1.808 64.301		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300					-
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Pressure Actual compression ratio/stage Discharge Temperature Suction Compressibility factor/stage	bara bara bara bara bara	1.289 0.143 0.224 2.101 29.744 14.157 1.075 30.819 2.177		1.289 ot defined 0.224 2.101 62.493 29.744 1.808 64.301 2.162		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101					~
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Pressure Actual compression ratio/stage Discharge Temperature Suction Compressibility factor/stage	bara bara bara bara bara	1.289 0.143 0.224 2.101 29.744 14.157 1.075 30.819 2.177 97.355 0.973 0.973		1.289 ot defined 0.224 2.101 62.493 29.744 1.808 64.301 2.162 96.774 0.946 0.959		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414					-
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Pressure Actual compression ratio/stage Discharge Temperature Suction Compressibility factor/stage Discharge Compressibility factor/stage	bar bara bara bara bara deg C	1.289 0.143 0.224 2.101 29.744 14.157 1.075 30.819 2.177 97.355 0.973 0.973 0.973		1.289 pt defined 0.224 2.101 62.493 29.744 1.808 64.301 2.162 96.774 0.946 0.959 0.952		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414 0.909 0.984 0.947					-
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Temperature Suction Compressibility factor/stage Discharge Compressibility factor/stage Mean Compressibility factor/stage Intel Capacity	bara bara bara bara bara deg C m3/min	1.289 0.143 0.224 2.101 29.744 14.157 1.075 30.819 2.177 97.355 0.973 0.973 0.973 0.973		1.289 pt defined 0.224 2.101 29.744 1.808 64.301 2.162 96.774 0.946 0.9559 0.952 2.824		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414 0.909 0.984 0.947 1.291					
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Pressure Actual compressibility factor/stage Discharge Compressibility factor/stage Inlet Capacity Mass flow	bara bara bara bara bara deg C m3/min kg/min	1.289 0.143 0.224 2.101 29.744 14.157 30.819 2.177 97.355 0.973 0.973 0.973 0.973 6.103 66.567		1.289 pt defined 0.224 2.101 62.493 29.744 1.808 64.301 2.162 96.774 0.946 0.959 0.955 2.824 66.567		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414 0.909 0.984 0.984 0.997 1.291 66.57					
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Suction Pressure per stage Interstage Pressure drop Discharge Pressure drop Discharge Pressure drop Discharge Pression ratio/stage Discharge Discharge Discharge Compressibility factor/stage Mean Compressibility factor/stage Initer Capacity Mass flow Alababtic Head of compression	bara bara bara bara bara deg C deg C m3/min kg/min kg/min	1.289 0.143 0.224 2.101 29.744 14.157 1.075 30.819 2.177 97.355 0.973 0.973 0.973 6.103 66.567 110342.33		1.289 ot defined 0.224 2.101 62.493 29.744 1.808 64.301 2.162 96.774 0.946 0.959 0.952 2.824 66.567 106925.88		1.289 1.300 0.224 2.101 131.300 62.493 0.0000 131.300 2.101 94.414 0.969 0.984 0.984 0.984 0.984 1.291 66.57 102007.84					*
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Sucton Pressure per stage Interstage Pressure drop Discharge Temperature Sucton Compressibility factor/stage Discharge Temperature Sucton Compressibility factor/stage Inter Capacity Mass flow Adlabatic Head of compression Compression Power	bara bara bara bara bara deg C deg C m3/min kg/min kN.m/kg kW	1 289 0.143 0 224 2.101 14.157 1.075 30.819 2.177 9.7355 0.973 0.973 6.103 6.667 110342.33 110342.3570		1.289 ot defined 0.224 2.101 62.493 29.744 1.808 64.301 2.162 96.774 9.946 0.959 0.952 2.824 66.567 106925.88 132.570		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414 0.909 0.984 0.987 1.291 66.57 102207.84 102207.74					
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Temperature Discharge Temperature Discharge Compressibility factor/stage Discharge Compressibility factor/stage Mean Compressibility factor/stage Mean Compressibility factor/stage Mean Compressibility factor/stage Compressibility factor/stage Mean Compression Power Mean Mean Mean Mean Mean Mean Mean Mean	bara bara bara bara bara deg C deg C m3/min kg/min kkn.m/kg KW kW	1.289 0.143 0.224 2.101 1.075 3.0.819 2.177 9.7.355 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973		1.289 ot defined 0.224 2.101 62.493 29.744 1.808 64.301 2.162 96.774 0.946 0.9559 0.9552 2.824 66.567 106925.88 132.570 0.04243		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414 0.909 0.984 0.947 1.291 1.297 102007.84 122.774 0.01940					**
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Temperature Discharge Temperature Discharge Compressibility factor/stage Discharge Compressibility factor/stage Iniet Capacity Mean Compressibility factor/stage Iniet Capacity Adalabatic Head of compression Compression Power suction Power Suction Specific volume Volumetric Efficiency	bara bara bara bara deg C m3/min kg/min kg/min kN.m/kg kW m²/kg %	1.289 0.143 0.224 2.101 1.075 30.819 2.177 97.355 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973		1.289 2.001 0.224 2.101 0.224 2.101 0.2493 29.744 1.808 64.301 2.162 98.774 0.946 0.959 0.959 0.952 2.824 68.567 106925.88 132.570 0.04243 84.888		1.289 1.300 0.224 2.101 3.1300 62.493 0.000 131.300 2.101 94.414 0.909 0.984 0.947 1.291 66.57 102007.84 122.774 0.1940 86.217					
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Pressure drop Discharge Temperature Suction Compressibility factor/stage Discharge Compressibility factor/stage Inter Capacity Mass flow Adalbabtic Head of compression Compression Power Suction Power Suction Specific volume Volumetric Efficiency Compression Efficiency	bara bara bara bara bara deg C m³/min kg/min kg/min kkN.m/kg kW m²/kg %	1 289 0.143 0 224 2.101 14.157 1.075 30.819 2.177 97.355 0.973 0.973 0.973 6.103 86.567 110342.33 137.570 0.09169 84.884		1.289 2.101 0.224 2.101 0.224 2.101 0.24 0.2493 0.744 1.8008 64.301 2.162 96.774 0.946 0.959 0.952 2.824 66.567 106925.88 132.570 0.04243 84.888 88.807		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414 0.909 0.984 0.984 1.291 66.57 102007.84 122.774 0.01940 86.428					
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Temperature Suction Compressibility factor/stage Discharge Temperature Suction Compressibility factor/stage Inter Capacity Mass flow Adlabatic Head of compression Compression Power Suction specific volume Volumetric Efficiency Cylinder displacement required	bara bara bara bara bara bara bara bara	1.289 0.143 0.224 2.101 14.157 1.075 30.819 97.355 0.973 0.973 0.973 6.103 66.667 110342.33 1103		1.289 t defined 0.224 2.101 0.224 2.011 0.287 29.744 1.808 64.301 2.162 96.774 0.946 0.959 0.952 2.824 86.567 106925.88 132.570 0.04243 84.888 88.807 3.327		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414 0.909 0.984 0.984 0.984 1.291 102007.84 122.774 0.01940 88.428 1.498					
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Pressure Catual compression ratio/stage Discharge Compressibility factor/stage Discharge Compressibility factor/stage Discharge Compressibility factor/stage Mean Compressibility factor/stage Mean Compressibility factor/stage Discharge Compressibility factor/stage Mean Compressibility factor/stage Suction Approximate Discharge Compressibility factor/stage Mean Compressibility factor/stage Mean Compressibility factor/stage Mean Compressibility factor/stage Mean Compression Power Sucton specific volume Volumetric Efficiency Cylinder displacement required Average Piston speed	bara bara bara bara bara bara bara bara	1.289 0.143 0.224 2.101 1.075 30.819 2.177 9.7355 0.973 0.973 0.973 0.973 6.103 66.567 110342.33 137.570 0.09769 84.581 88.899 7.216 249.300		1.289 t defined 0.224 2.101 1.808 64.301 2.162 96.774 0.946 0.959 0.952 2.824 66.567 106925.88 132.570 0.04243 84.888 88.807 3.327 249.300		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414 0.909 0.9894 0.947 1.221 1.220 1.22774 0.01940 86.217 88.428 1.498 249.300					
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Compression ratio/stage Discharge Compression ratio/stage Discharge Compression ratio/stage Discharge Compression/lty factor/stage Discharge Compressibility factor/stage Inter Capacity Mass flow Adlabatic Head of compression Compression Power Suction Compression Fower Suction Compression Fower Compression Efficiency Cylinder displacement required Average Piston apeed Cylinder diameter	bara bara bara bara bara deg C m³/min ky/min kN.m/kg KW m³/kg % % m³/min m/min m/min	1 289 0.143 0 224 2.101 14.157 1.075 30.819 2.177 97.355 0.973 0.973 6.057 6.037 6.037 6.037 6.033 137.570 0.9169 84.581 88.886 7.216 249.300 249.300 19.701		1.289 t defined 0.224 2.101 2.403 29.744 1.808 64.301 2.162 96.774 0.946 0.9559 0.952 2.824 66.567 106925.88 132.570 0.04243 88.807 3.327 249.300 13.377		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414 0.909 0.984 0.947 1.291 66.57 102007.84 122.774 0.1940 86.217 88.428 1.498 249.300 8.976					~
Ratio of Specific heat, k Pulse Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Temperature Sucton Compressibility factor/stage Discharge Temperature Discharge Compressibility factor/stage Intel Capacity Mass flow Adlabatic Head of compression Compression Efficiency Cylinder displacement required Average Piston speed Cylinder dismeter Area, head-end	bara bara bara bara bara bara bara kara deg C willion kg/min kg/min kww kw ww m²/kg % % m²/min m/min mm²	1 289 0.143 0 224 2.101 14.157 1.075 30.819 2.177 97.355 0.973 0.973 6.103 66.667 110342.33 137.570 0.09189 84.581 88.896 7.216 249.300 19.701 304.836		1.289 t defined 0.224 2.101 2.403 29.744 1.808 64.301 2.162 98.774 0.946 0.959 0.952 2.824 68.567 108252.88 132.570 0.04243 84.888 88.807 3.327 249.300 13.377 140.544		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 0.31.300 0.984 0.984 0.984 1.281 66.57 102007.84 122.774 0.01940 86.217 88.428 1.498 8.496 8.496 8.576 63.276 63.					
Ratio of Specific heat, k Puise Damper loss Specific heat exponent ratio Approximate compression ratio per stage Approximate Discharge pressure/stage Suction Pressure per stage Interstage Pressure drop Discharge Temperature Suction Compressibility factor/stage Discharge Temperature Compressibility factor/stage Intel Capacity Mass flow Adiabatic Head of compression Compression Power Suction specific volume Volumetric Efficiency Compression Efficiency Compression speed Cylinder dialecement required Average Piston speed Cylinder dianeter Area, head–end Area, crank-end	bara bara bara bara bara bara bara bara	1 289 0.143 0 224 2.101 14.157 1.075 30.819 97.355 0.973 0.973 0.973 6.103 6.667 110342.33 110342.33 110342.33 110342.33 7.216 249.300 19.701 2.126 249.300 19.701		1.289 t defined 0.224 2.101 0.224 2.101 0.262 9.744 1.808 64.301 2.162 96.774 0.946 0.959 0.952 2.824 86.567 106925.88 132.570 0.04243 84.888 88.807 3.327 249.300 13.377 140.544 17.825		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 2.101 94.414 0.909 0.984 0.984 0.984 1.291 102007.84 122.774 0.01940 86.577 102007.84 1.292 1.292 1.292 1.292 0.01940 86.577 88.428 2.49.300 8.976 8.3276 5.3276 5.3276					
Discharge Compressibility factor/stage Mean Compressibility factor/stage Inlet Capacity Mass flow Adlabatic Head of compression Compression Power	bara bara bara bara bara bara bara kara deg C willion kg/min kg/min kww kw ww m²/kg % % m²/min m/min mm²	1 289 0.143 0 224 2.101 14.157 1.075 30.819 2.177 97.355 0.973 0.973 6.103 66.667 110342.33 137.570 0.09189 84.581 88.896 7.216 249.300 19.701 304.836		1.289 t defined 0.224 2.101 2.403 29.744 1.808 64.301 2.162 98.774 0.946 0.959 0.952 2.824 68.567 108252.88 132.570 0.04243 84.888 88.807 3.327 249.300 13.377 140.544		1.289 1.300 0.224 2.101 131.300 62.493 0.000 131.300 0.31.300 0.984 0.984 0.984 1.281 66.57 102007.84 122.774 0.01940 86.217 88.428 1.498 8.496 8.496 8.576 63.276 63.					

Figure 1. Microsoft Excel Program Screen Print-out Solution of input/output for the Example

Tonye K. Jack International Journal Of Computational Engineering Research / ISSN: 2250–3005

4. CONCLUSIONS

The programmed solution method using Microsoft Excel (VBA) for the sizing and performance analysis calculations of reciprocating compressors is greatly simplified in handling the several parameters involved. What-if type of analysis can be conducted by changing certain variables such as suction pressure to fulfil limiting discharge pressure condition. The tedium with certain manual tasks in hand calculation is also eliminated.

5. References

- 1. R. F. Neerken, Keys to Compressor Selection, *Chemical Engineering*, 1979, pp. 17-33.
- 2. Scheel, J. F., Gas Machinery, Gulf Publishing, Houston, 1972
- 3. Gresh, T., Compressor Performance : Selection, Operation and testing of Axial and Centrifugal Compressors, Butterworth-Heinemann, 1991
- 4. H. Mak, Handheld Calculator Program Helps Size New Reciprocating Compressors, *Oil & Gas Journal*, June 25, 1984, pp. 86-89
- 5. Brown, R. N., Compressors: Selection and Sizing, Gulf Publishing, 2nd ed., 1997
- 6. Ludwig, E. E., Applied Process Design for Chemical and Petrochemical Plants, Vol. 3, Gulf Publishing, Houston, 1993
- Avallone, E. A., ed., Baumeister III, T. ed., Sadagh, A. M. ed., Mark's Standard Handbook of Mechanical Engineers, 11th ed., 90th anniversary ed., McGraw-Hill, 2007, pp. -4:27
- 8. Edmister, W. C., Applied Hydrocarbon Thermodynamics, Part 1 & 2, 1985
- 9. Escoe, K., "Mechanical Design of Process Systems", Vol. 1 & 2, 1986
- 10. Reid, R. C., Sherwood, T. K., The Properties of Gases and Liquids, McGraw Hill, 1966
- 11. R. C. Reid, Derivative Compressibility factors, Ind. & Eng. Ch. Fundamentals, Nov. 1962

Author Information

Tonye K. Jack is a Registered Engineer, and ASME member. He worked on plant maintenance and rotating equipment in the Chemical Fertilizer industry, and on gas turbines in the oil and gas industry. He has Bachelors degree in Mechanical Engineering from the University of Nigeria, and Masters Degrees in Engineering Management from the University of Port Harcourt, and in Rotating Machines Design from Cranfield University in England. He was the Managing Engineer of a UK engineering software company, Alignagraphics. He is currently a University Teacher in Port Harcourt, Rivers State, Nigeria, teaching undergraduate classes in mechanical engineering. His research interests are on rotating equipment engineering, maintenance, engineering management, engineering computer programs, and applied mechanics. He can be reached by