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Abstract 
In this paper, we have presented an efficient non-blocking coordinated check pointing algorithm for distributed systems. It 

produces a consistent set of checkpoints, without the overhead of taking temporary checkpoints; the algorithm also makes 

sure that only few processes are required to take checkpoints in its any execution; it uses very few control messages and the 

participating processes are interrupted fewer number of times when compared to some noted related works. The two most 

important criteria are non-blocking and minimum number of checkpoints. Cao-Singhal showed in their algorithm that it is 

impossible to design minimum process non-blocking algorithm but it is not desirable in mobile environment that 
underlying computation will be blocked whenever a check pointing algorithm invoked. If the check pointing scheme is 

blocking then the performance of the system will be highly affected by the frequent initiation of check pointing algorithm. 

We must try to minimize the blocking time while keeping the number of checkpoints minimum. So, the proposed scheme 

concentrate to minimize this overhead by combining coordinated check pointing with minimum blocking time.  
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Introduction 
Distributed system consists of only static hosts. But nowadays, the needs of mobile devices have been increased greatly 

which in turn, gave rise of a new technology, called mobile computing. We can consider mobile computing is a special 

case of distributed computing system. The term ‗mobile‘ implies able to move while retaining its network connection and a 

host which can move is called mobile host (MH). The infrastructure machines that can communicate directly with mobile 

hosts are called mobile support stations (MSS). Due to mobility and portability of devices mobile computing is 

characterized by some constraints [3]: 

 Mobile elements are resource-poor relative to static - For a given cost and level of technology, considerations of weight, 

power, and size ergonomics will exact a penalty in computational resources such as processor speed, memory size, and 

disk capacity. While mobile elements will improve in absolute ability, they will always be resource- poor relative to 

static elements. 

 Mobility is inherently hazardous- A Wall Street stockbroker is more likely to be mugged on the streets of Manhattan 

and have his laptop stolen than to have his workstation in a locked office be physically subverted. In addition to security 

concerns, portable computers are more vulnerable to loss or damage. 

 Mobile connectivity is highly variable in performance and reliability - Some buildings may offer reliable, high-

bandwidth wireless connectivity while others may only offer low-bandwidth connectivity. Outdoors, a mobile client 

may have to rely on a low-bandwidth wireless network with gaps in coverage. 

 Mobile elements rely on a finite energy source - While battery technology will undoubtedly improve over time, the 

need to be sensitive to power consumption will not diminish. Concern for power consumption must span many levels of 

hardware and software to be fully effective. 

Fault-tolerance [4] or graceful degradation is the property that enables a system to continue operating properly in the event 

of the failure of some of its components. An incremental check-pointing approach introduced by Elnozahy et.al [2].  In [1] 
first gives the idea, how a process in a distributed system can determine a global state of the system using special marker 
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message during computation. There are three most important parameter of coordinated check-pointing are synchronization 

message overhead, number of checkpoints and blocking time. The following algorithms [1][2][5][6][7][8][9] introduce the 

idea to minimize the overhead. Koo–Toueg[15] propose the two phase protocol that forces only a minimal number of 

additional processes to take checkpoints. Prakash - Singhal[5] first introduces the algorithm which makes it possible that 

only a minimum number of processes take checkpoint without blocking the underlying computation during check-pointing. 

In[8] Weigang-Susan introduce a strategy called proxy coordinator. In [13], a hybrid check-pointing protocol has been 
introduced that has been combined with selective sender based message logging. The idea proposed in [14] alleviates the 

problem of combining pessimistic message logging with uncoordinated check-pointing protocol. 

 

Proposed Scheme 
Consider  a  set  of  n  processes,  {P1,  P2  ,…,  Pn   } involved    in    the   execution   of   a    distributed algorithm.     

Each     process     Pi     maintains a dependency vector DVi of size n which is initially empty  and  an  entry  DVi[j] is 

set  to  1 when Pi receives  since  its  last  checkpoint  at  least  one message  from  Pj.  It  is  reset  to  0  again  when 

process  Pi   takes  a  checkpoint.  Each process Pi maintains a checkpoint sequence number csni. This csni actually 

represents the current check pointing    interval    of    process    Pi.    The check-pointing interval of a process denotes all 

the    ith and (i+l)   Computation performed between its I checkpoint but not thec checkpoint, including the ith checkpoint. 

The csni is initially set to 1 and (i+l) incremented when process Pi takes a checkpoint. In this approach we assume that 

only one process can initiate the check pointing algorithm.  This process is known as the initiator process. We  define  

that  a  process   Pk  is  dependent  on another  process  Pr,  if  process  Pr  since  its  last checkpoint has received at  

least one application message   from   process   Pk.   In   our   proposed algorithm   we   assume   primary   and   

secondary checkpoint request exchanges between the initiator process and the r est n-1 processes.  A  primary checkpoint  

request  is  denoted  by  Ri    (i  =  csnj) where i is the current checkpoint sequence number of  process  Pj  that  initiates  

the  check pointing algorithm. It is sent by the initiator process Pj to all its dependent processes asking them to take their 

respective checkpoints.  A secondary checkpoint  request denoted by Rsi is sent from a process Pm to a process Pn which 

is dependent on Pm   to take a checkpoint. Rsi means to its receiver process that i is the current checkpoint sequence 

number of the sender process. The control message exchange is explained with an illustration shown in Figure 1. 

Consider a distributed system with three processes P1, P2, and P3.  We assume that P1 initiates the check pointing 

algorithm. To start with, P1 takes a checkpoint and sends a primary checkpoint request to P2, asking it to take a 

checkpoint as it is directly dependent on P1.  P2 takes a checkpoint after it receives the primary checkpoint request.  

After taking   its   checkpoint   P2       sends   a   secondary checkpoint request to P3 as P3 is dependent on P2, Process P3 

then takes its checkpoint. In this work, an application message is represented by Mi,x , which means that it is the xth 

message sent by process Pi . The checkpoint Ci,j represents the jth checkpoint taken by Pi. We have assumed that the 

events of taking a   checkpoint and sending a checkpoint request are done atomically. Also, each process   Pi     
piggybacks   its   current   checkpoint sequence number with  only every first  outgoing application message to another 

process after taking We  now  state  the  situations  in  general  when  a process  Pi  needs  to  take  a  checkpoint.  In our 

approach a process Pi takes a checkpoint if any of the following events occurs - if Pi is the initiator then if it receives a 

primary checkpoint request from the initiator. The first time it receives a secondary checkpoint request and prior to that it 

has not received any primary checkpoint request or any piggybacked application message. The first time it receives an 

application message piggybacked    with    the    checkpoint    sequence number, and prior to that it has not received any 

primary or secondary checkpoint request message. 
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Figure 1: Process of taking Non-Blocking Coordinated checkpoint 

Illustration 
The behavior of each process in our approach is explained with the help of the following example. Unless otherwise 

mentioned a checkpoint request represents either a primary request or a secondary request.  Note that an  application  

message  with piggybacked  checkpoint sequence number, which may force a checkpoint to be taken at the receiving 

process   may   also  be  viewed  as  a  checkpoint  request.   In   our   work   a   checkpoint   means   a permanent 

checkpoint. Consider the distributed system as shown in the Fig. 2. Assume that process P2 initiates the check pointing 

algorithm.  First process   P2 takes its permanent checkpoint C2,1.  It  then  checks  its dependency vector DV2[] 

which is {1, 0,1,1,0,0,0}. This means that process P2 has received at least one message from processes P1, P3, and P4, 

and since P2 has already taken its checkpoint C2,1 these messages will become orphan if P1, P3, and P4 do not take  

checkpoints. Therefore P2 sends primary checkpoint request R1 (csn2 = 1) to P1, P3, and P4. After  sending  the  

primary   checkpoint   request process  P2  increments  its   checkpoint  sequence number  csn2  to  2  and  finishes  its  

participation associated   with   the   current   execution   of   the algorithm    and    continues    with its    normal 

computation.  It shows the non-blocking nature of our approach. On receiving  the primary checkpoint request  R1 from 

P2, process P3 first takes a checkpoint C3,1 and  then  it  checks  its  own  dependency  vector DV3[] which is 

{0,0,0,0,1,0,0}. Therefore process P3 sends a secondary checkpoint request Rs1 to process P5. Then its checkpoint 

sequence number csn3 is incremented to 2. Similarly processes P1 and   P4     first   take   checkpoints   C1,1   and   

C4,1 respectively,    then    each    process    checks    its dependency vector to find the dependent processes. Process P1 

finds that its dependency vector DV1 [] is    null.   Hence   it   increments   its   checkpoint sequence number   to 2, and   

continues normal execution. Process P4 finds that it has received a message from process P5.  Hence P4 sends a 

secondary checkpoint request Rs1 to process P5. It then increments its checkpoint sequence number csn4 to 2, and 

continues normal execution. At process P5 let us assume that the secondary checkpoint request Rs1 sent by process P4 

reaches before the secondary checkpoint request sent by process P3. On receiving the secondary checkpoint request  Rs1  

from  process  P4, P5  checks  its  own checkpoint sequence number csn5  with that of the received  checkpoint  sequence  

number.  P5 finds that its current checkpoint sequence number (csn5= 1) is not greater than the received checkpoint 

sequence number which is also equal to 1. Hence it   decides   to   take   a   checkpoint   and   takes checkpoint C5,1.  
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After taking the checkpoint it checks its dependency vector DV5 and finds that process P7 has sent a message to it. 

Hence it sends a secondary checkpoint request Rs1 to P7. After sending the request it increments its checkpoint 

sequence number csn5 from 1 to 2. Assume that later process P5 receives the secondary checkpoint request sent by 

process P3. As soon as process P5 receives the checkpoint request it compares its current checkpoint sequence number 

csn5 with the received checkpoint sequence number. It finds that its current checkpoint sequence number (csn5 = 2) is 

greater than the received checkpoint sequence number   which   is   1.   Hence   it   discards   the checkpoint request.  

The  above  discussion  takes care  of  the  first  three  situations  about  when  a process takes  a checkpoint.  Below, we 

consider the fourth situation. Suppose    that process    P4 after    taking    the checkpoint continues normal execution and 

sends an application message M4,1 to process P7. Since the  application  message  is  the  first  application message  to  

process  P7  from  P4  after  taking  the checkpoint,  it  is   piggybacked  with  the  current checkpoint sequence number  

(csn4) of  process P4 which is 2. Process P7 on receiving the application message    piggybacked with the checkpoint 

sequence number compares its current checkpoint sequence    number    csn7 with the received checkpoint sequence 

number.  It finds that the received checkpoint sequence number is equal to 2 and is greater than its current checkpoint 

sequence number (csn7) which   is   equal to 1.  Therefore process P7   decides to take a checkpoint before processing 

the application message M4,1. P7 then takes   its   checkpoint   C7,1   and   increments   its  checkpoint   sequence   

number   to   2   and   then processes the application message M4,1. Eventually process P7 also receives the secondary 

checkpoint request sent by process P5.  P7  first compares its current checkpoint sequence number with  the  received  

checkpoint  sequence  number which  is  1.  It  finds  that  its  current  checkpoint sequence  number  is  greater  than  the  

received checkpoint    request.    Hence    P7    discards    the secondary checkpoint r equest  as it has already taken its 

checkpoint for the current execution of the algorithm. In the above example we observe that P7 sent a message M7,1 to 

P5. So even if there was no such piggybacked message as M4,1, process  P7 would eventually  receive  the   secondary   

check-pointing request Rs,1 from P5 and take its checkpoint C7,1. Observe that because of the non-blocking nature of 

the algorithm the following situation may arise as well. Consider that there was no such message as M7,1; that is, 

assume that P7   has not sent any application message to any process at all. However, assume that it receives the 

piggybacked message M4,1  from  P4.  In our approach P7   will take its checkpoint and then process the message and then 

would behave like any other process involved in the check pointing a ppr oa ch .  

 

Data Structures 
 Status: A Boolean variable maintained at each process Pi. If Statusi =1, then Pi is in a check-pointing phase. When Pi 

receives a checkpoint request it sets Statusi =1 and after receiving the checkpoint commit message it resets Statusi =0. 

 DP: A Boolean array of size n, maintained by MSS on behalf of its local MHs. DPi[j]=1 means process Pi receives 

some computation messages from Pj. All elements of this array are initialized to 0 except DPi[i]=1. 

 RP: A Boolean array of size n, maintained by MSS on behalf of its local MHs. It is used to save dependency relation 

during the check-pointing interval. It is same as DP. After that interval n-bitwise OR operation is performed between 

the elements of DP and RP and the result is stored to DP. Then RP is refreshed. 

 Count: It is an integer variable stored at process Pi. It is initialized to 0. Each time the check-pointing algorithm 

invoked by Pi , counti is incremented by 1. 

 Mark: It is a Boolean variable which is used to indicate the blocking period at the receiver side MSS. If mark = 1, that 

means the MSS is waiting for the final dependency list and that time all incoming messages will be buffered at MSS. 

 

Assumption 
1. Processes communicate only through messages. They do not share any common memory 

    or common clock            

2. All communication channels between MHs and MSSs are FIFO. The channels between   MSS and MSS are also FIFO. 

3. No process fails during the check pointing phase. 

4. Channels are lossless. Messages arrive with an arbitrary but finite delay. 

5. A process will not receive any checkpoint request from another initiator before the current executing one is completed. 

 

First Phase 
1. When process Pi running on MHi wants to save its state, it takes a tentative checkpoint and informs its current MSS, 

MSSp so that MSSp starts the checkpointing algorithm as a proxy coordinator on behalf of  Pi. MSSp sets markp = 1. 

2.  MSSp sends request to all other MSSs in the system to collect the dependency vectors of other MHs in  the system. 
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3. All other MSSs in the system respond to the request by sending the dependency vectors of their local MHs and starts 

waiting for final dependent set. After sending the dependency sets of their MHs, MSSq (q!=p) sets markq = 1 

3.1 MSSq  receives a computation message for a process Pj which is currently under it, if  markq = 1, then MSSq  buffers the 

message and update the dependency information in RPj[]. 

3.2 MSSq receives an outgoing computation message from an MH currently under it. It doesn‘t block the message. It 

forwards the message to the MSS of the receiver process. 

3.3  If  MSSp receives a message, it checks the value of mark and if mark is set to 1, then it checks whether the receiver is 

the initiator i.e. MHi. If receiver = MHi then it forwards the message, otherwise buffers it. 

4.   MSSp, the proxy coordinator receives the dependency vectors from other MSSs. After that MSSp constructs an NxN 

dependency matrix with one row per process, represented by the dependency vectors of the process. Based on this 

NxN matrix, MSSp can locally calculates both (direct and transitive) dependents of  Pi. 

5.     MSSp  broadcasts the final dependent list to all other MSSs. 

6.     On receipt of the dependent list, MSSq  checks the buffered messages. 

6.1  If receiver process (i.e. the process belongs to MSSq  ) of the buffered message is in the dependent list, then   MSSq    

attaches a flag=1 with that message and sends to the intended process. 

6.2  If sender process of the buffered message is in the dependent list, then MSSq   keeps the payload of the message in   

stable log on behalf of the receiving process and sends the message  to the intended process.  

6.3  If both the sender and the receiver is in the dependent list, then MSSq checks the status of the sender. 

6.3.1 If  status of sender = 1, then set flag = 1. 

6.3.2 If  status of sender = 0, just delivers the message as it is. 

7.   MSS at the receiver side keeps the copy of the message in its volatile log. When MSSq receives the final dependency 

list, it which MHs within its area are not in the dependency list. Then MSSq checks the dependency list of process Pk, 

which is not in the final set. If MSSq finds DPk[j] = 1 and Pj belongs to final dependent set. Then MSSq finds all the 

messages with sender Pj  from the temporary log of Pk and flushed them to the stable storage. 

8.  When all buffered messages have been delivered MSSq resets markq = 0. sends checkpoint request to all its local 

processes which are in the dependent list.  

9.    Process Pj receives a computation message and it checks the value of the flag bit attached to the message 

       9.1 If  flag =1, then Pj takes a tentative checkpoint and sets its status to 1. Then it processes  the message. 

       9.2 If  flag =0, then Pj simply processes  the message. 
10. Process Pj  receives a checkpoint request message. It checks the value of  Statusj.  If    Statusj =1, it discards the 

checkpoint request and if Statusj =0, it takes a tentative checkpoint, sets its status to 1 and sends back a reply to its 

MSSq. 

11. MSSq  has received reply messages from all the processes to which it sent checkpoint request messages, it sends a reply 

message to the initiator, MSSp.  

 

Second Phase 
1. If MSSp receives reply from all the dependent processes, then it broadcast a commit message to all the MSSs in the 

system. Otherwise abort the check-pointing algorithm. 
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2. On receipt of the commit message, the tentative checkpoint becomes permanent. The elements of dependency vectors 

DP of the processes, which have taken checkpoint, are refreshed and elements of RP are copied to DP. 

 

Optimization 
The performance of a check-pointing algorithm is determined by three parameters - blocking time, synchronization 

message overhead and number of checkpoints required. N= Number of MHs and M= Number of MSSs and N >> M. Let us 

assume, all processes running on the MHs and there is only one process running on each MH. 

 

Experimental Results 

Algorithm Blocking Time Messages 

Koo-Toueg[8] N* (4* Tmh + Tchkpt + Tsearch) N*(6* Cmh + Csearch) 

Cao-Singhal[11] 2* Tmss 3N* Cmh 

Proposed Scheme Tmss  3N* Cmh 

Table 1: Comparative Study of Proposed Scheme 

 

 

 

 

 

Meaning of Notations 

 Cmss = cost of sending message between any two MSSs. 

 Cmh = cost of sending a message from an MH to its local MSS. 

 Cbroad  = cost of broadcasting a message in the static network. 

 Csearch = cost incurred to locate an MH and forward amessage to its current local MSS, from a source MSS. 

 Tmss  = average message delay in the static network. 

 Tmh = average message delay in the wireless network. 

 Tsearch  = average delay incurred to locate an MH and forward a message to that MH. 

 Tchkpt = Average delay to save a checkpointon the stable storage 

 

In order to measure buffering time - after an MSS has sent all its local dependent vectors to the proxy MSS; it can‘t 

forward any computation message to its local MH until it receives the final set of dependent processes. An MSS buffers the 
messages during this time. Total blocking time of Cao-Singhal Algorithm was 2Tmss. When an  MSS of a sending process 

receives a computation message immediate after sending the dependency vector to the proxy MSS, it forwards the message 

to the MSS of receiving process and the message will be buffered their. So, in worst case, the maximum time of buffering 

will be Tbuffer = 2Tmss - Tsearch .  

So, Tbuffer <= Tmss. Since  Tsearch >= Tmss  

Therefore, the computation will not be blocked for 2Tmss time. 

Handling Lost Message- In this scheme, both the send and receive event is recorded in the dependency vector. So, here the 

lost messages have been handled properly. In figure 4.1, messages m5  and m1 will be lost though they have reached and 

processed successfully by process P2 and P6, if only receive events are stored in the dependency vector. Because sending 

event of messages m5  and m1 are recorded since process P3, P4, P5  will take checkpoints in case of storing only receive 

events. But here, both send and receive have been recorded in global checkpoint. No broadcast message - in this scheme, 
there is a broadcast message at the MH level. So, it will not interrupt that process that is in doze mode and hence, fulfilling 

the limited battery power constraint of mobile hosts. Search Cost-The mobility of hosts in mobile computing environment 

incurs a large amount of search delay and hence search cost. In this scheme, there is no search cost for checkpoint request 

messages since initiator broadcasts the final set of dependents to every MSS in the system. The MSSs forward the request 

message only to their local MHs. 

 

Conclusion  
The proposed scheme is developed to reduce the blocking time of the coordinated check pointing algorithm. The above 

scheme might be more optimized in terms of blocking time. The recovery issue has not been discussed here. Further 
developments are being carried out to handle recovery issues.   
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