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I. INTRODUCTION 
Electroencephalography (EEG) records electrical activity generated by neuronal firing in the cerebral 

cortex using electrodes placed on the scalp or directly on the cortex. Due to its high temporal resolution, cost-

effectiveness, and non-invasiveness, EEG is extensively used in clinical and research contexts, including seizure 

detection, sleep analysis, cognitive workload monitoring, emotion recognition, and brain-computer interfaces 

(BCIs) [1,2]. 

However, EEG signals are inherently noisy, non-stationary, and susceptible to artifacts such as muscle 

movements, eye blinks, and power line interference. Therefore, advanced signal processing is essential for 

extracting relevant patterns that can be classified into meaningful cognitive or pathological states. Feature 

extraction is a crucial step in this pipeline, as it transforms raw signals into compact and discriminative 

representations. Practical features may capture dynamics in the time, frequency, spatial, or nonlinear domain, 

depending on the application [3,4]. 

Classification, the next crucial step, maps the extracted features to the desired labels, such as seizure 

versus non-seizure or left-hand versus right-hand motor imagery. Traditional classifiers such as Support Vector 

Machines (SVMs), Linear Discriminant Analysis (LDA), and k-Nearest Neighbors (k-NN) have been used 

extensively, while deep learning methods like Convolutional Neural Networks (CNNs) and Long Short-Term 

Memory (LSTM) networks are gaining popularity due to their automatic feature learning capability [5,6]. 

This review paper aims to provide a systematic overview of EEG feature extraction and classification 

methods, bridging classical approaches and contemporary deep learning techniques. We also identify open 

challenges in the field and highlight future research directions that can enhance the reliability and scalability of 

EEG-based systems. 

 

II. EEG SIGNAL CHARACTERISTICS 
Electroencephalography (EEG) captures the brain's electrical activity with high temporal resolution by 

measuring voltage fluctuations across the scalp or cortex. These signals, typically in the range of 0.5 to 100 Hz, 

reflect the summated post-synaptic potentials of pyramidal neurons in the cerebral cortex [7]. Despite its long-
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standing clinical utility, analyzing EEG signals is complex due to several intrinsic characteristics that influence 

the choice of preprocessing, feature extraction, and classification strategies. Figure 1 shows a pipeline for EEG 

signal processing. 

 

 
Figure 1: EEG signal processing pipeline. 

 

2.1 Frequency Bands 

EEG signals are commonly decomposed into standard frequency bands, each associated with distinct 

physiological and cognitive states: 

• Delta (0.5–4 Hz): Observed during deep sleep and unconscious states. 

• Theta (4–8 Hz): Linked to drowsiness, meditation, and early sleep stages. 

• Alpha (8–13 Hz): Prominent during relaxed wakefulness, especially with closed eyes. 

• Beta (13–30 Hz): Associated with active thinking, motor activity, and alertness. 

• Gamma (30–100 Hz): Related to higher-order cognitive functions, such as attention and memory [8]. 

These frequency components form the basis for many feature extraction techniques, including bandpower 

estimation and spectral entropy analysis. Figure 2 shows signal traces for different frequency bands. 

 

Figure 2: EEG frequency bands in the low and high frequency range. 

 

2.2 Temporal and Spatial Resolution 

One of EEG’s main advantages is its millisecond-level temporal resolution, which makes it ideal for 

capturing transient cognitive or pathological events, such as epileptic spikes or event-related potentials (ERPs). 

However, due to volume conduction and the nature of scalp recordings, EEG has poor spatial resolution, often 

limiting its precision in localizing neural sources [9]. Advanced source localization algorithms and spatial filters 
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(e.g., Independent Component Analysis, Common Spatial Patterns) are employed to enhance spatial 

interpretability. 

 

2.3 Non-Stationarity 

EEG signals are non-stationary, meaning their statistical properties change over time. This variability may be 

induced by physiological factors (e.g., cognitive load, drowsiness) or external artifacts. As a result, classical signal 

processing methods (e.g., FFT) must often be complemented by time-frequency or adaptive strategies, such as 

Wavelet Transform or Empirical Mode Decomposition, to handle temporal fluctuations effectively [10]. 

 

2.4 Signal Amplitude and Noise 

EEG amplitudes are typically in the range of 10–100 µV and are easily contaminated by various sources of noise: 

• Physiological artifacts: Eye movements (electrooculogram, EOG), muscle activity (electromyogram, 

EMG), heartbeats (electrocardiogram, ECG). 

• Environmental artifacts: Power line interference (50/60 Hz), electrode movement, cable noise. 

Artifact removal is often a prerequisite for reliable feature extraction and classification. Techniques such as 

regression, blind source separation (e.g., ICA), and filtering are widely used [11]. 

2.5 Inter Subject & Intra Subject Variability 

EEG characteristics vary significantly between individuals (inter-subject) and within the same individual over 

time (intra-subject), due to factors such as head shape, electrode impedance, mental state, and fatigue [12]. These 

variabilities present a significant challenge for building generalizable models and often necessitate subject-

specific calibration or domain adaptation techniques. 

 

III. PREPROCESSING TECHNIQUES 
EEG preprocessing is a fundamental step in signal analysis, aiming to remove unwanted noise and 

artifacts while preserving informative neural activity. Given the low amplitude and high susceptibility of EEG 

signals to both internal and external interferences, effective preprocessing is crucial to ensure the quality and 

reliability of downstream feature extraction and classification tasks. This section reviews the most common EEG 

preprocessing methods, including filtering, artifact removal, baseline correction, and normalization. 

 

3.1 Filtering 

Filtering is often the first step in EEG preprocessing. It eliminates irrelevant frequency components, such as DC 

offsets or power line noise, and focuses the analysis on frequency bands of interest. 

• Bandpass filters (typically 0.5–70 Hz) are used to retain frequencies relevant to brain activity. 

• Notch filters are applied at 50 or 60 Hz to suppress power line interference [13]. 

• High-pass filters (e.g., ≥0.5 Hz) remove slow drifts, while low-pass filters (e.g., ≤70 Hz) attenuate high-

frequency noise [14]. 

Filtering must be designed carefully to avoid signal distortion or phase shifts, particularly when analyzing event-

related potentials (ERPs) or transient features. 

3.2 Artifact Removal 

EEG signals are frequently contaminated by non-neural artifacts, which can significantly affect analysis and 

classification performance. Artifact removal techniques can be categorized into two broad groups: manual 

methods and automated algorithms. 

Blind Source Separation (BSS): Independent Component Analysis (ICA) is one of the most widely used BSS 

techniques. It decomposes EEG into statistically independent components, allowing artifacts such as eye blinks 

or muscle activity to be identified and removed [15]. Other methods include Canonical Correlation Analysis (CCA) 

and Principal Component Analysis (PCA). 

Regression-Based Methods: Regression techniques can subtract known artifact sources (e.g., EOG or EMG 

channels) from the EEG data to isolate the underlying neural activity. This method assumes that the artifact 

contribution is linearly correlated with reference channels [16]. 

Wavelet-Based Methods: Wavelet Transform enables multiresolution decomposition, making it suitable for 

detecting and eliminating artifacts that vary in time and frequency. Wavelet thresholding has been employed to 

remove high-amplitude transients, such as muscle bursts, without compromising the underlying neural signals 

[17]. 

 

3.3 Baseline Correction 

Baseline correction is commonly applied in event-related analyses, where the mean voltage of a pre-stimulus 

window is subtracted from the post-stimulus period. This ensures that observed deflections are relative to a 

consistent reference level [18]. It helps eliminate slow drifts and improves the interpretability of ERP components. 
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3.4 Normalization and Standardization 

Normalization reduces inter-channel and inter-subject variability by scaling features to a standard range, such as 

[0, 1] or zero-mean unit-variance. This is especially important when using machine learning algorithms that are 

sensitive to feature magnitude, such as SVMs or neural networks [19]. 

• Z-score normalization: Subtracts the mean and divides by the standard deviation. 

• Min-max normalization: Scales features to a fixed interval, typically 0, 1. 

Normalization ensures fair weighting of features during classification and improves convergence in optimization-

based methods. 

 

IV. FEATURE EXTRACTION METHODS 
Feature extraction is a critical step in EEG analysis, aiming to transform raw data into a more manageable 

and informative form that enhances classification performance. Due to the multidimensional and non-stationary 

nature of EEG signals, a wide range of features have been proposed in various domains, including time, frequency, 

time-frequency, spatial, and nonlinear representations. More recently, deep learning techniques have also enabled 

the automatic learning of features directly from raw or minimally processed signals. This section categorizes and 

discusses the most widely used methods. 

 

4.1 Time-Domain Features 

Time-domain features are directly computed from the amplitude of EEG signals over time and are often 

computationally efficient. 

• Mean and Variance: Represent central tendency and dispersion of the signal within a time window. 

• Zero-Crossing Rate: Indicates the number of times the signal crosses the zero-voltage axis; can reflect 

signal roughness. 

• Hjorth Parameters: Include Activity (signal power), Mobility (mean frequency), and Complexity (rate 

of frequency change) [20]. 

• Skewness and Kurtosis: Measure the asymmetry and peakedness of the signal distribution, respectively. 

• Peak-to-Peak Amplitude: The difference between maximum and minimum values within a time 

window. 

Time-domain features are handy for ERP-based paradigms and seizure detection. 

 

4.2 Frequency-Domain Features 

Frequency-domain features are extracted using spectral analysis techniques that decompose EEG into constituent 

frequency components. 

• Power Spectral Density (PSD): Estimated using methods such as the Fast Fourier Transform (FFT) or 

Welch’s method, it reflects the power distribution across frequency bands [21]. 

• Band Power: Average power in specific bands (delta, theta, alpha, beta, gamma), often used in sleep 

staging, BCI, and attention monitoring. 

• Spectral Entropy: Measures the spectral complexity; higher entropy implies more uniform power 

distribution. 

• Spectral Edge Frequency (SEF): Frequency below which a certain percentage (e.g., 95%) of total 

spectral power is contained. 

Frequency-based features are robust and widely used in both clinical and cognitive EEG applications. 

 

4.3 Time-Frequency Features 

Time-frequency representations are particularly suitable for capturing the non-stationary nature of EEG signals. 

• Short-Time Fourier Transform (STFT): Applies FFT over short overlapping windows to capture 

localized frequency changes. 

• Wavelet Transform (WT): Decomposes the signal into multi-resolution components using wavelet basis 

functions, enabling the analysis of transient patterns, such as epileptic spikes or sleep spindles [22]. 

• Hilbert-Huang Transform (HHT): Combines Empirical Mode Decomposition (EMD) and Hilbert 

Transform to extract instantaneous frequencies from nonlinear and non-stationary data [23]. 

Wavelet-based features have been highly successful in seizure detection, motor imagery classification, and 

emotion recognition. Figure 3 shows a time-frequency map using the wavelet transform. 
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Figure 3: An example time-frequency map. 

 

4.4 Spatial Features 

Spatial filtering techniques improve the signal-to-noise ratio by enhancing class-discriminative activity across 

multiple EEG channels. 

• Common Spatial Patterns (CSP): Maximizes variance for one class while minimizing it for another; 

widely used in motor imagery BCI [24]. 

• Independent Component Analysis (ICA): Separates EEG into statistically independent sources; also 

used for artifact removal. 

• Surface Laplacian: Computes the second spatial derivative to enhance local brain activity and suppress 

volume-conducted signals. 

These techniques exploit the spatial structure of EEG data, especially in multichannel recordings. 

4.5 Nonlinear and Entropy Based Features 

EEG signals exhibit chaotic dynamics and nonlinear behavior, which can be quantified using complexity measures. 

• Approximate Entropy (ApEn) & Sample Entropy (SampEn): Quantify regularity and 

unpredictability in a time series. 

• Permutation Entropy: Captures signal complexity based on ordinal patterns. 

• Fractal Dimension & Hurst Exponent: Describe the self-similarity and long-range dependence in the 

signal [25]. 

• Lyapunov Exponent: Measures sensitivity to initial conditions, often used in seizure prediction. 

Nonlinear features are compelling in pathological EEG classification tasks. 

 

4.6 Deep Learning-Based Feature Learning 

Deep learning models can automatically learn hierarchical features from raw EEG data, removing the need for 

handcrafted features. 

• Convolutional Neural Networks (CNNs): Learn spatial and temporal filters directly from multichannel 

EEG inputs, making them effective in motor imagery, ERP, and seizure detection [26,27]. 

• Recurrent Neural Networks (RNNs) and LSTM: Capture temporal dependencies and long-term 

patterns in EEG. 

• Transformers: Recent architectures that use self-attention to model long-range dependencies without 

recurrence. 

• Autoencoders: Used for unsupervised representation learning and dimensionality reduction. 

These methods require large datasets and significant computational resources but can outperform traditional 

pipelines when properly trained. 

 

V. CLASSIFICATION 
Once relevant features have been extracted from EEG signals, the next step is to assign them to 

predefined classes using appropriate classification algorithms. Classification is essential in various EEG-based 

applications, including seizure detection, brain-computer interface control, cognitive state monitoring, and sleep 
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stage classification. Depending on the task, both traditional machine learning methods and modern deep learning 

approaches are used. This section categorizes the main EEG classification strategies into conventional machine 

learning, ensemble methods, deep learning classifiers, and evaluation metrics. 

 

5.1 Traditional Machine Learning Algorithms 

Traditional classifiers have been extensively used for EEG classification due to their interpretability and 

effectiveness on relatively small datasets. 

• Support Vector Machine (SVM):SVM is widely used due to its robustness in high-dimensional feature 

spaces and its ability to construct optimal hyperplanes. Kernel functions (linear, polynomial, radial basis function) 

can be employed to model nonlinear relationships in EEG data [28]. 

• k-Nearest Neighbors (k-NN): k-NN classifies a sample based on the majority class among its k-nearest 

neighbors in the feature space. It is non-parametric and straightforward, but can be sensitive to noise and 

computationally expensive with large datasets [29]. 

• Linear and Quadratic Discriminant Analysis (LDA/QDA): LDA assumes Gaussian-distributed 

classes with equal covariances and is popular in motor imagery BCI due to its computational efficiency. QDA is 

a nonlinear extension that allows each class to have its covariance matrix [30]. 

• Naïve Bayes Classifier: This probabilistic classifier assumes feature independence given the class label. 

While this assumption is often violated in EEG data, Naïve Bayes can still provide competitive performance in 

some contexts [31]. 

• Decision Trees: These create interpretable rules based on feature thresholds, but they are prone to 

overfitting. Regularization or pruning is typically necessary to avoid this issue. 

 

5.2 Ensemble Learning Methods 

Ensemble classifiers combine the predictions of multiple base learners to improve robustness and accuracy. 

• Random Forests (RF): Random Forest is an ensemble of decision trees trained on random subsets of 

data and features. It reduces overfitting and increases classification stability [32]. 

• AdaBoost and Gradient Boosting: These methods iteratively combine weak classifiers to form a strong 

classifier. AdaBoost adapts to errors by reweighting instances, while Gradient Boosting uses gradient descent to 

minimize loss functions [33]. 

Ensemble techniques are particularly beneficial in EEG applications with complex decision boundaries or noisy 

features. 

 

5.3 Deep Learning Classifiers 

With the increasing availability of large EEG datasets and computational power, deep learning models have 

become prominent due to their ability to learn discriminative features directly from raw or minimally processed 

EEG data. 

• Convolutional Neural Networks (CNNs): CNNs extract spatial and temporal patterns through 

convolutional filters. They have been widely used for motor imagery, sleep stage classification, and seizure 

detection [34]. Models such as EEGNet have demonstrated high accuracy with a relatively small number of 

parameters. 

• Recurrent Neural Networks (RNNs) and LSTMs: RNNs are capable of modeling temporal 

dependencies in EEG signals. Long Short-Term Memory (LSTM) units address the vanishing gradient problem, 

making them suitable for capturing long-range dependencies [35]. 

• Transformer-Based Models: Recently, attention-based architectures such as transformers have been 

adapted for EEG analysis, enabling the model to focus on the most informative parts of the signal across time and 

space [36]. 

• Hybrid Models: Combining CNNs with LSTMs or attention mechanisms can further enhance 

classification by simultaneously leveraging spatial and temporal dependencies. 

 

5.4 Evaluation Metrics 

EEG classification performance is commonly evaluated using several metrics: 

• Accuracy (ACC): Proportion of correctly classified samples. 

• Precision, Recall, F1-Score: Useful for imbalanced datasets. 

• Area Under Curve (AUC): Indicates classifier performance across decision thresholds. 

• Confusion Matrix: Summarizes true vs. predicted class distributions. 

• Cross-Validation: Techniques such as k-fold or leave-one-subject-out are often used to ensure 

generalization. 

Choosing appropriate metrics is essential, especially in clinical applications where misclassifications can have 

serious consequences. 
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VI. CONCLUSION 
Electroencephalography (EEG) remains one of the most widely used tools in neuroscience and clinical 

diagnostics due to its non-invasive nature and excellent temporal resolution. However, transforming raw EEG 

signals into meaningful information suitable for decision-making involves a complex pipeline of preprocessing, 

feature extraction, and classification. 

In this review, we provided a structured and comprehensive overview of EEG feature extraction methods 

across time, frequency, time-frequency, spatial, and nonlinear domains. We also examined emerging deep 

learning-based approaches that automate feature learning from raw or minimally preprocessed EEG signals. 

Furthermore, we analyzed a broad spectrum of classification techniques, including traditional machine learning 

algorithms such as SVM, LDA, and Random Forest, as well as advanced deep neural networks, including CNNs, 

LSTMs, and transformers. 

Each method brings specific advantages and limitations depending on the application, data availability, 

and computational constraints. For instance, handcrafted features remain useful in domains with limited data, 

while deep learning approaches excel when large, annotated datasets are available. Despite numerous 

advancements, several challenges persist, including inter-subject variability, low signal-to-noise ratio, and the 

need for robust real-time performance. 

Future research should focus on developing generalizable and interpretable models, leveraging 

techniques such as transfer learning, domain adaptation, and explainable artificial intelligence. The integration of 

multimodal biosignals, edge computing, and privacy-preserving learning frameworks, such as federated learning, 

also holds significant promise. 

Overall, the synergy between advanced signal processing techniques and powerful classification 

algorithms will continue to play a pivotal role in expanding the scope and impact of EEG-based technologies 

across clinical, cognitive, and human-computer interaction domains. 
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