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I. Introduction 
Wireless networks have become ubiquitous, with mobile users expecting seamless connectivity as they 

move across cell boundaries. Modern wireless systems (4G, 5G, and beyond) face more challenging 

environments with high mobility, dense deployment, and rapidly changing channel conditions due to fading, 

interference, and blockages. Traditional handover strategies typically rely on static parameters such as Received 

Signal Strength Indicator (RSSI) or Reference Signal Received Power (RSRP), with fixed thresholds and fixed 

time-to-trigger (TTT) values. Such static strategies often result in suboptimal performance: delayed handovers, 

frequent radio link failures (RLF), ping-pong effects (oscillation between base stations), increased packet loss, 

or degraded throughput. 

To address these issues, a more adaptive, context-aware, and data-driven approach is required — one 

that can learn from observed channel behavior, user mobility, interference, and adapt handover decision 

parameters in real time (or near real time). In this work, we propose such an automated data-driven handover 

mechanism. Our contributions are: 

1. Feature design and data collection: We define a set of features (instantaneous and averaged over 

windows) that capture channel condition variations, interference, user velocity, base station load, etc. 

2. Modeling and learning: We use supervised machine learning to train a decision model that predicts 

when handover should be triggered, and to which target base station, under varying channel conditions. 

3. Simulation and evaluation: We set up a simulation testbed under realistic mobility, fading, and 

interference conditions, compare our mechanism against conventional threshold & TTT based schemes, and 

measure key performance indicators (KPIs) such as handover success rate, latency, packet loss, throughput, and 

ping-pong rate. 

4. Analysis and insights: We show how the data-driven model adapts better under high mobility and 

rapidly changing channel conditions, and discuss trade-offs (e.g. complexity vs. delay in decision, feature 

collection overhead). 

The rest of this paper is organized as follows: Section II reviews related work, Section III presents system 

design and methodology, Section IV describes experiments and results, Section V discusses findings and 

limitations, and Section VI concludes with future directions. 

Abstract—Seamless handover in wireless networks is critical for ensuring high quality of service 

(QoS) in mobile environments especially when channel conditions vary rapidly. Traditional 

threshold-based handover schemes often suffer from delayed reaction, high packet loss, frequent 

ping-pong effects, or radio link failures under dynamic conditions. In this paper, we propose an 

automated, data-driven handover mechanism that uses machine learning to decide when and where 

to handover. The system collects multi-dimensional channel and context features (e.g., RSSI, SINR, 

interference, user velocity), and trains a supervised learning model to predict optimal handover 

triggers. We implement the mechanism in a simulation environment under realistic mobility and 

channel variation, compare it with traditional fixed threshold and time-to-trigger (TTT) based 

schemes. Results show significant improvements in handover success rate, reduced latency, lower 

packet loss, and decreased ping-pong handovers. We conclude that data-driven handover control is 

promising for future networks, including 5G and beyond. 

 

Index Terms—Handover, Wireless Networks, Data-Driven, Machine Learning, Mobility, Channel 

Variation, SINR, RSSI, Ping-pong, Time-to-Trigger. 
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II. Related Work 
A number of recent works have explored machine learning or data-driven handover or mobility management. A 

brief survey: 

• Data-Driven Handover Optimization: In Data-Driven Handover Optimization in Next Generation 

Mobile Communication Networks (Lin, 2016), they used a neural network to model the relationship between 

mobility features (e.g., speed, direction) and handover parameters (handover margin – HOM, TTT) to optimize 

for minimizing combined mobility issues such as ping-pong, RLF, etc. [1] 

• Learning-based Handover in mmWave: In Learning-based Handover in Mobile Millimeter-wave 

Networks the authors use reinforcement learning to choose backup base stations and optimize handover 

decisions in mmWave systems, considering beamforming and dense deployment. [2] 

• Context-Aware Handover in HetNets: The work Context-Aware Handover Analysis in Heterogenous 

Wireless Network Using Machine Learning compares a variety of neural network methods (and optimization 

techniques) for vertical handovers where users move across different access technologies (WiFi, Wimax, etc.). 

[5] 

• ML-Based Handover Prediction & AP Selection in WiFi: The work ML-Based Handover Prediction 

and AP Selection in Cognitive WiFi Networks is relevant, where machine learning was used to reduce 

unnecessary handovers and improve AP selection based on features rather than just strongest-signal first. [5] 

• Recent Advances & Surveys: There are several survey / review papers that outline current challenges 

and trends: e.g., A Survey on Handover and Mobility Management in 5G HetNets: Current State, Challenges, 

and Future Directions[3] ; Recent Advances in Data-driven Intelligent Control for Wireless Communication[2] 

; and Data-Driven Design of 3GPP Handover Parameters with Bayesian Optimization and Transfer Learning 

(2025) which shows how Bayesian optimization + transfer learning can help adapt fixed 3GPP handover 

parameters under varied conditions. [2] 

 

Gaps / Motivation for This Work: 

• Many existing works deal with specific technologies (mmWave, vertical handover, dual connectivity) 

or confined environments, but fewer tackle general wireless networks under rapidly varying channel conditions 

(including interference, dynamic fading). 

• There is often a trade-off: more complexity (feature collection, training, prediction) vs delay in 

decision. It's not always clear how much overhead these ML models impose and at what cost. 

• Transferability / generalization across users, across different speeds, and across different environments 

is often not fully addressed. 

• Real-time or near-real-time evaluation under realistic simulation environments is still less frequent. 

Our work aims to address these gaps by designing, implementing, and evaluating a data-driven handover 

mechanism that is responsive to channel variations, user mobility, interference and which can adapt better than 

static or semi-static schemes. 

 

III. System Model and Methodology 
A. System and Network Model 

• Network topography: Assume a cellular network with multiple base stations (BSs) (or access points, 

APs) arranged in overlapping coverage zones. Users (User Equipments, UEs) move through the network 

following mobility models (random waypoint, highway, etc.). 

• Channel model: The wireless channel includes path loss, shadowing, fast fading. Interference from 

adjacent BSs is considered. SINR and RSSI measurements are available. 

• Handover parameters: Standard parameters include handover margin (HOM), time-to-trigger (TTT), 

hysteresis thresholds. These are adjustable in our model. 

B. Feature Design and Data Collection 

For data-driven decision making, the following features are collected over short time windows (e.g., last few 

seconds): 

 

Feature Description 

RSSI_current Received signal strength from serving cell 

RSSI_candidate Signal strength from candidate neighboring cell(s) 

SINR_current Signal to Interference plus Noise Ratio of serving cell 

SINR_candidate SINR of candidate cell 

Δ RSSI Difference between candidate and serving RSSI 

Δ SINR Difference between candidate and serving SINR 
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Feature Description 

UE_velocity Estimate of the user’s speed 

UE_direction Direction relative to cell boundaries / movement vector 

Interference_level Estimated interference from neighbors 

Load_serving Load (number of active UEs / resources) in serving BS 

Load_candidate Load in candidate BS 

Time_since_last_handover To avoid too frequent handovers 

 

Label for supervised learning: whether a handover at that time (to which candidate) would be optimal (based on 

ground truth simulation or oracle policy). 

C. Machine Learning Model 

• Model choice: We use supervised learning classification. Possible model types: Random Forest, 

Gradient Boosted Trees (e.g., XGBoost), or Neural Network. 

• Training procedure: Split collected dataset into training / validation / test. Use cross-validation. Tune 

hyperparameters (depth, number of trees, learning rate, etc.). 

• Decision output: At each decision interval (e.g. every T_dec seconds), the model decides: 

1. Should a handover be triggered? 

2. If yes, which candidate cell should be the target. 

• Thresholds and TTT: The model may implicitly learn decision boundaries, but in some variants, 

outputs are combined with a minimum TTT and hysteresis to avoid oscillations. 

D. Comparison Baselines 

We compare the proposed mechanism with: 

• Fixed threshold-based handover (e.g. RSSI difference + hysteresis) with fixed TTT. 

• 3GPP standard A3 event mechanism (as used in LTE/5G) where candidate cell must exceed serving 

cell by an offset for a duration (TTT). 

• Possibly an adaptive but not fully data-driven scheme (e.g. manually tuned TTT / HOM based on 

speed). 

E. Performance Metrics 

We evaluate the following KPIs: 

• Handover Success Rate (HSR): Fraction of required handovers that succeed without radio link 

failure. 

• Radio Link Failure (RLF) Rate. 

• Ping-pong Rate: Number of back-and-forth handovers between cells. 

• Handover Latency: Delay from decision trigger to completion of handover. 

• Packet Loss: During the handover. 

• Throughput, both instantaneous and average. 

• Overhead: How much signaling / measurement / computation cost the mechanism imposes. 

F. Simulation Setup 

• Mobility models: e.g. random waypoint, linear paths, variable speeds (walking speed, vehicular speed 

e.g. up to 100 km/h). 

• Channel: path loss, shadowing, Rayleigh or Rician fading. Interference from neighboring cells. 

• Number of base stations: e.g. 7‐cell hexagonal layout, or dense small cell overlay. 

• Decision interval T_dec (how often the ML model is invoked). 

• Size of dataset: enough trajectories, repeated runs to get statistical significance. 

 

IV. Experiments and Results 
Note: In the absence of your own simulation/hardware data, the following are hypothetical/illustrative results. 

You should replace with your own. 

A. Setup 

• Simulation of a cellular network with 7 hexagonal macro cells in urban environment; overlay with 

small cells to simulate heterogeneity. 

• UEs move with speeds uniformly drawn between 3 km/h (walking) to 80 km/h (vehicular). 

• Channel: path loss + lognormal shadowing + Rayleigh fast fading. Measurements of RSSI/SINR 

updated every 100 ms. 

• ML model: XGBoost classifier. Decision interval T_dec = 0.5 s. Ground truth labels computed using 

an “oracle” policy that knows future channel for short horizon. 
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• Baseline: Fixed HOM = 3 dB; TTT = 200 ms; standard 3GPP A3 event. 

•  

B. Results 

Metric Baseline (Fixed Threshold + TTT) Proposed Data-Driven Mechanism 

Handover Success Rate 85% 95% 

Radio Link Failure Rate 10% 3% 

Ping-pong Rate 15% 5% 

Avg. Latency (handover) 250 ms 180 ms 

Packet Loss during HO 8% 2% 

Throughput (average) 20 Mbps 25 Mbps 

Overhead (computational + 

signaling) 
Low (baseline levels) Moderate (feature collection + prediction) 

 

C. Discussion 

• The ML-based mechanism adapts more quickly to rapid channel deterioration (e.g. when interference 

spikes, or when candidate cell becomes much better) than fixed thresholds, reducing RLF. 

• Ping-pong rate is significantly reduced: the model learns to avoid marginal decisions (small 

RSSI/SINR gains) that do not persist. 

• Latency and packet loss are improved since handovers are triggered earlier and more appropriately. 

• Overhead is non-negligible: feature collection, inference, etc. However, with optimized 

implementation, the cost is manageable (especially as edge computing or local inference becomes feasible in 

modern networks). 

• Generalization: performance holds across varying speeds, but for very high speed (e.g. >120 km/h) 

there is still some performance degradation vs. ideal. 

 

V. Discussion and Limitations 

• Trade-offs: There is a balance between decision frequency and overhead. More frequent decisions 

allow faster adaptation but cost more in computation and possibly measurement delays. 

• Feature selection and measurement delays: Some features (e.g. interference, candidate SINR) have 

measurement lags. Prediction based on stale features can degrade performance. 

• Generalization / Transfer: Models trained in one environment (urban, specific BS layout) may not 

perform best in another without retraining or transfer learning. 

• Edge computing constraints: Real-world deployment would need inference to be done efficiently 

(e.g. in UE or local base station) to avoid back-haul delays. 

• Dataset bias: If training data doesn’t include certain edge conditions (e.g. very high mobility, heavy 

interference), performance may degrade. 

• Real-world deployment issues: Signaling overhead, standardization, compatibility with existing 

handover protocols (3GPP, etc.), measurements granularity, etc. 

 

VI. Conclusion and Future Work 
In this paper, we presented an automated data-driven handover mechanism for wireless networks under 

varying channel conditions. Using multi-feature collection and a supervised learning model, our mechanism 

significantly improved handover success rate, reduced radio link failures and ping-pong handovers, and 

improved throughput and latency compared to fixed threshold/TTT baselines. These results suggest that data-

driven handover decision models are well suited for next-generation networks (5G/B5G/6G), especially in 

heterogeneous and dynamic environments. 

Future work includes: 

• Extending to reinforcement learning (RL) or deep RL approaches, where the system can learn 

handover policies over time (longer horizon), perhaps with rewards based on throughput, latency, etc. 

• Incorporating transfer learning to adapt models trained in one cell layout / environment to new ones, 

reducing retraining effort. (Some recent work such as Data-Driven Design of 3GPP Handover Parameters with 

Bayesian Optimization and Transfer Learning shows promise here) [6] 

• Applying to vertical handovers (between different radio access technologies, e.g. WiFi + cellular) or 

hybrid networks (e.g. LiFi + WiFi) to test heterogeneity. 

• Deployment in real testbeds / field trials to validate simulation findings. 
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• Optimizing for overhead / energy consumption, so that the mechanism is lightweight enough for 

practical UE/base station hardware. 
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