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I. Introduction 
A safe, reliable and available supply of fair transport for students has consistently appeared as a top 

concern for any community. Lack of bus network planning leads to air pollution, noise, accident, user‘s 

dissatisfaction, and consequently, extra transportation costs. Indeed, the rise of fuel prices and the increased time 

(due to congestions) required to take students to and from schools have forced families to use public bus 

transportation system. These assumptions have led communities to concentrate on providing an efficient school 

bus service. 

The issue is addressed in the literature as theSchool Bus Routing Problem (SBRP). Generally, SBRP 

addresses the problem of how to transport students to and from schools in the safest, the most economical and 

convenient approach (Corberán et al. (2002)). Each bus has to transfer students to and from schools while 

satisfying predefined constraints such as bus capacity, student‘s maximum allowable riding time in a bus, and 

time windows of the school.  

Tehran, the capital of Iran, is one of the40 largest cities in the world with a population of about 9.4 

million
1
 in 2023. It is estimated that more than 1 million students in Tehran use public transport on a daily basis 

(data is compiled by author).Additionally, it is estimated that buses used only in Tehran to transport students to 

schools travel about 412 million km per year with a total transport cost of $170 million. It should be mentioned 

that transporting students to school by bus is definitely much more efficient and environmentally friendly than 

using private vehicles. Due to the high population of students in Tehran, handling school transportation service 

has been an important challenge for educational authorities. However, certain features of student transportation 

in Tehran (e.g., safety and existing security restrictions, multiple routes per bus, inconsistency in loading and 

                                                           
1
https://worldpopulationreview.com/world-cities/tehran-population 

Abstract 
This paper introduces a new variant of the School Bus Routing Problem (SBRP) in which the 

following are considered:  determining the set of possible stops to be visited, allocation of students 

to possible stops, and making each route while riding students of different schools in a bus is 

possible (mixed load effect).  A new mathematical formulation is proposed to solve the problem 

optimally. In order to evaluate the developed mathematical model, random instances in small, 

medium and large instances are generated.  To solve instances in medium and large sizes, an 

Adaptive Large Neighborhood Search (ALNS) and different configurations of large neighborhood 

search heuristic are proposed. The attained results reveal that among the proposed heuristics, 

ALNS is a reliable metaheuristic and provides solutions with lower cost. We compare the main 

characteristics (total travel time and total number of buses) when using a single and a mixed load 

strategy. The results demonstrate overall reduction in number of routes (up to 11.36%) and total 

travel time and (up to 14.56%) when utilizing mixed load effect. Additional analysis is performed in 

order to analyze the performance of different configurations of large neighborhood search 

heuristics. 
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unloading times of student) result in tremendously challenging schoolbusrouting problems that require 

additional efforts to plan and organize cost-effective transport services. 

To support these issues, on the one hand, authorities have always attempted to provide an efficient 

transport system by considering the limited resources so that a large amount of money can be saved. From user‘s 

perspective, however, student convenience needs to be guaranteed as well while designing a transportation plan. 

In former cases, due to the lack of available resources, it was not possible to dedicate one bus to a single school 

(see e.g. Park and Kim, (2010)). In those cases, it would be beneficial to pick up different students of different 

schools using the same bus (This is called ―mixed load approach‖,differing from ―single load approach‖ which 

does not allow for transporting students of different schools in the same bus). The sharing of resources between 

schools helps boost the efficiency of school-bus system. Nevertheless, it increases the complexity of the 

problem, resulting in overcrowded buses and long routes. For this reason, it seems that designing bus routes 

based on a mixed load plan can be an effective solution approach, in which appropriate objective,assumptions, 

and constraints should be considered.  

In order to address these issues, a number of desirable criteria, including objectives and assumptions, 

needs to be considered. Undoubtedly, these criteria can significantly affect the performance of public 

transportation.  

As Savas (1978) has proposed, three criteria for assessing the performance of public facilities should be 

considered: efficiency,effectiveness, and equity. Each criterion incorporates its own constraints and objectives 

to be fulfilled.  

Efficiency criterion is expressed as the ratio between service level and the cost of resources needed to 

provide the service in question. According to Bowerman et al. (1995), there exist two kinds of perspectives on 

SBRP; one is the cost per distance travelled and the other is the capital cost required to handle school bus. Thus, 

an efficient service level follows the solution with a fewer number of buses and a shorter travel distance. The 

effectiveness indicator measures how well the demand is satisfied. More precisely, effectiveness necessitates 

that SBRP system must be available for eligible students and provide them with adequate service. Eventually, 

the equity criterion calculates the equality or fairness of serviceprovision. First, on first off approach to board 

students and load balancing the routes can be cited as good ways of improving this criterion. The objectives and 

assumptions to be adopted in this study must ensure that limited resources are being employed in the best way to 

pick up and deliver students, thereby reducing costs and increasing users‘ convenience. To this aim, in term of 

efficiency, we strive to minimize the bus's travel distance. The effectiveness indicator considers the maximum 

allowable travel distance for each bus and bus capacity constraints.  

Two representative examples of equity criterion are (1) making a balance between routes to avoid too 

large variations in route loading (i.e. making a desirable distribution of students between routes) and (2) 

assigning a reasonable number of students to each stop. 

The first research in which the phrase ―school bus routing problem‖ appeared is attributed to Newton 

and Thomas (1969). Detailed explanations on SBRP and a survey of the relevant literature can be found in Park 

and Kim (2010). They classified SBRP into five categories: data preparation, bus stop selection, bus route 

generation, and school bell time. Data preparation deals with preparing necessary routing data, including 

student residence locations, schools' geographical locations, and types of fleet used. Bus stop selection refers to 

defining reachable bus stops for students (pick-up or drop-off locations for students) such that these stops will 

be visited by buses. In rural cases, thebus stop is located at the student residence, whereas in urban areas, 

students should walk to the bus stop. It is worth mentioning that, for some cases,bus accessibility is denied due 

to road conditions. Thus, the boarding point is fixed on picking up or dropping off students. Bus routing 

generation constructs the order based on which selected stops are to be visited. There are two types of heuristics 

employed to generate routes: route-first cluster-second and cluster-first route-second. Bus scheduling problem 

attempts to assign a chain of trips to the same bus while considering the time window of the school. Finally, 

school bell time introduces different starting and ending time constraints for schools. In some cases, different 

school time windows are considered for a school. This leads the bus schedule to take up more than one trips, 

resulting in a decrease in travel distance.  

The SBRP presented in this paper consists of two interrelated sub-problems including bus stop 

selection and route generation,which are two of the five sub-problems mentioned in Park and Kim (2010). 

Each student has to walk to the bus stop from his/her home by considering themaximum walking distance of 

students from the possible bus stops. Afterward, the bus starts from the garage and picks up students from the 

visited bus stops while satisfying assumptions such as bus capacity and maximum route length.To maintain 

convenience for students, student‘s maximum walking distance to bus stop and maximum allowable number of 

students in each bus stop are also considered. To the best of the authors‘ knowledge, the current study is the first 

to jointly address bus stop selection and routing generation while considering both mixed loading and load 

balancing effects. More precisely, this paper is constructed based the original paper addressed by 
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Schittekat(2013) and then it is tried to develop this paper corresponding real case sitation( mixed load effect, 

school time window, etc.) 

Not surprisingly, adaptive large neighborhood search(ALNS) has been successfully used in a variety of 

vehicle routing problems (VRPs) )Goeke and Schneider (2015), Hiermann et al. (2016)(, but it still new for 

SBRP presented in this paper 

The main contributions of our study are as follows: 

 Considering a new set of benchmark instances generated randomly, but the problem characteristic is 

made close to the real situation in Tehran  

 Proposing a new mathematical formulation of SBRP, which considers thedefined objectiveand 

assumptions. 

 Analyzing the performance of each insertion and removal operator separately. 

 Suggesting an ALNS metaheuristic for solving medium and large instances of SBRP, tuned using a 

statistical experiment and then compared with existing benchmark. 

 Comparing the influence of mixed load and single load approaches on reducing the number of buses, 

total traveled distance, average weighted riding distance of students, and bus occupation.  

 

II. Literature Review 

Over the last decades, numerous researchers have provided significant contributions tothe field of school 

bus routing problem. Only the most interesting works in literature, although not exhaustively, will be reviewed 

in this paper. Regarding problem description, bus stop selection, bus routing, and bus scheduling studies will be 

appraised. In addition, concerning problem characteristics, the authors will survey features such as single load 

and mixed load contents and rural and urban cases. Comprehensive explanations of the general SBRP and a 

review of associated literature can be found in Park and Kim (2010).  

The majority of SBRP studies have concentrated on one or two objectives: minimizing bus route 

travelled and minimizing the number of required buses (Li and Fu, 2002) and Pacheco and Martí (2006)). 

However, a few studies have addressed other objectives that describe maximum route length (Park and Kim 

(2010)), student riding times (Bennet et al. (1972), Thangiah et al. (1992), Li and Fu (2002)), and student 

walking distance to a bus stop (Bowerman et al. (1995)). 

SBRP can be employed for one or multiple schools at the same time. It is worth mentioning that real-life 

problems usually deal with several schools, though for simplicity‘s sake some authors consider only one school. 

Schittekat et al. (2006), Pacheco and Martí (2006), Martinez and Viegas (2011), Ledesma and Gonzalez (2012), 

and Euchi and Mraihi (2012)) all have developed single school models.  

A large and growing body of literature has investigatedbus stop selection approach. In fact, bus stop 

selection attempts to select a set of bus stops and then allocate students to these defined stops. In the case of 

rural areas, a student is picked up from his/her home. Conversely, in urban regions, students are picked up at 

certain bus stops. The heuristic solution methods for bus stop selection are categorized into location-allocation-

routing (LAR) strategy and allocation-routing-location (ARL) strategy. In the first case (LAR), a set of bus 

stops are defined initially, and then students are allocated to these stops. Afterward, a number of routes 

connecting a selection of bus stops are created. In practice, as bus stop selection and student allocation occur 

before route generation, this approach leads to the production of an excessive number of routes. In the second 

approach (ARL), students are first allocated to clusters while satisfying capacity constraint. After that, bus stops 

are selected for each cluster and a route is constructed. As a final step for each existing cluster, students are 

allocated to the bus stops in which predefined assumptions (including maximum walking distance of students 

from their residence, and maximum number of students that can be assigned to a bus stop) are considered. 

Applying this method creates several advantages as follows: firstly, effective load balancing can be carried out 

during the allocation phase; secondly, it allows the possibility of keeping the number of buses at minimum 

levels. Chapleau et al. (1985) and Bowerman et al. (1995) have studied ALR approach.  

Schittekat et al. (2013) classified SBRP in three sub-problems: finding a set of bus stops to be visited, 

determining the bus stop to which each student should walk, and determining routes to visit the defined bus 

stops while minimizing the total distance traveled by each bus.  

A number of researchers haveexplored bus routing generation mechanism. According to Park et al. 

(2012), the algorithm for bus route generation is classified into ‗‗route-first, cluster-second‖ approach and the 

‗‗cluster-first, route-second‖ approach. In the former, a long route is first created and then divided into smaller 

ones considering predefined constraints (Newton and Thomas (1969) and Bodin and Berman (1979 b)).  In the 

latter, students are grouped into clusters in such a way that each cluster covers a route respecting some pre-

defined constraints (Dulac et al. (1980), Chapleau et al. (1985) and Bowerman et al. (1995)). 

In both cluster-first and route-first approaches, after constructing an initial solution, an improvement 

phase is applied in order to enhance the solution. Newton and Thomas (1969), Dulac et al. (1980), Chapleau et 
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al. (1985) and Desrosiers et al. (1986) have investigated a 2-opt method, and Bennett and Gazis (1972) and 

Bodin and Berman (1979b) have employed a 3-opt approach.  

An interesting field of application which has not received much attention so far concerns transporting 

students using a mixed load framework, called mixed loading plan. It means moving students from different 

schools by the same bus simultaneously.  

A considerable amount of literature has been published on various kinds of mixed loading school bus 

routing problem (Bodin and Berman, (1979), Chen et al. (1988), Hargroves et al. (1981), Braca et al. (1997), 

Spada et al.(2005), Simchi et al. (2005), Hernan Caceres et al. (2015), Bogl et al. (2015), Campbell et al. (2015), 

Ellegood et al. (2015), Kang et al. (2015), Chen et al. (2015), Maciel Silva et al. (2015), Fátima Machado et al. 

(2016), and Yao et al. (2016)). To better understand mixed load effect in the current study, Table 1 summarizes 

the main features considered in rural and urban school bus routing. 

The problem of mixed load was first introduced by Bodin and Berman (1979) who highlighted that this 

method is commonly encountered in rural areas in order to enhance the flexibility of school bus service and to 

decrease operation costs. Chen et al. (1988) claimed that considering a single load assumption results in an 

excessive number of buses required to transport students, especially when low density areas are under 

consideration.  

 

The first computation algorithm for mixed load problem was proposed by Braca et al. (1997). In this 

paper, an insertion heuristic was developed in which each bus stop and its respective school are inserted in the 

cheapest position while satisfying time window and bus capacity constraints. The authors also claimed that 

mixed load problem leads to improving flexibility and producing a significant cost saving. Braca et al. (1997) 

reported that mixed load has been permitted for most parts of New York City.  

In a similar study, Spada et al. (2005) considered multiple schools and proposed a heuristic procedure to 

solve the problem. The recommended structure improves the service level provided by the bus operator,while 

allowing mixed load case. The schools are sorted according to their starting time, and correspondingly the routes 

are created using a greedy method. Subsequently, local search frameworks (simulated annealing and Tabu 

search) are used to improve the initial solution. 

Park and Kim (2010) improved the model proposed by Bracaet al. (1997) by implementing post-

improvement procedures. They also performed a quantitative study to measure the special effects of using 

mixed loading method. The problem incorporates several features:  the homogeneous fleet, different starting 

times, time window, and capacity constraints.  

Bogl et al. (2015) studied bus stop selection, pupil assignment, bus routing, and bus scheduling. They 

compared the results using two different modeling approaches, namely DARP (Dial-A-Ride Problem) and 

OVRP (Open Vehicle Routing Problem). Campbel et al. (2015) made use ofa strategic continuous 

approximation to investigate the value of mixed loading for school bus routing problems and also developed 

three-phase heuristics to evaluate mixed bus trips. The results revealed that mixed trips are more favorable when 

(1) students are sparsely distributed, (2) there exist many bus stops, and (3) there is the possibility of sharing 

large percentage of stops. The results also emphasized that mixed routing is more beneficial when there is 

appropriatestudent distribution between schools and large percentage sharing of stop between schools. Kang et 

al. (2015) examined the assumptions of mixed loading, homogeneous vehicles, and schools with different 

starting times. The process was constructed as follows: students are clustered by using a covering approach 

aiming at minimizing the number of stops; afterward, the genetic algorithm will construct a route with the 

objective of minimizing total travelled distance. In case an infeasible solution appears after either mutation or 

crossover operator, time-consuming repair operators come into play in order to return the solution to a feasible 

one. In the same context, Chen and Kong et al. (2015) solved a bi-objective (fleet's fixed cost and the routing 

cost) school bus routing problem that takes account of different school starting times and heterogeneous fleet 

assumptions. Another similar study is that of Maciel Silva et al. (2015). They solved the problem considering 

assumptions such as mixed load, heterogeneous fleet, and schools starting at the same time. The authors did not 

consider different fixed costs for different bus types. They proposed the GRASP heuristic to solve the problem 

of real instance.  Present study offers fewer fleet size (up to 37%) and lower traveled distance (up to 20%) while 

considering mixed load effect. Chen et.al (2016) introduced the problemcharacteristic with considering split 

demand for each stop. That means there is possibility of visiting each stop by several buses. Lima et al. (2016) 

developed five metaheuristic-based algorithms while considering mixed load and heterogeneous fleet. They also 

performed a comparison between the results of the proposed algorithms that have been considered in their paper. 

The solutions demonstrated that the mixed load approach entails a greater cost saving and a lower fleet size 

compared to the single load approach.  

Additionally, Rodríguez-Parra et.al (2017) studied the school bus routing and scheduling in version of 

mixed load and single load effect. Riding special education student in mixed load case considered by Caceresa 

et .al (2015). This problem has significant different from regular SBRP and needs to consider careful attention. 
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In practice, considering bus with different seat configuration (the bus needs to be equipped with wheelchairs), 

picking up of student occur in their homes, etc. More over based on problem characteristics, they involve 

different bell time and more disperse location for considered school.  They reveal that benefit of combining 

mixed load and different starting time can result in less number of buses. Recently, Lima et.al (2017) addressed 

the multi-objective meta-heuristic algorithms for multi objective SBRP featuring mixed load and heterogeneous 

fleet. The proposed objectives include total traveling time of students, balance of routes between drivers, routing 

cost. Four-multi objective ILS metaheuristics are developed and the attained result draw better performance 

respect to current literature. Another interesting paper in the context of mixed load SBRP is addressed by 

Miranda et.al (2018). Theyintroduced the scope of research that consider both mixed load (students of different 

schools can be in same bus) and multi load problem (pickup and delivery of students occur simultaneously, 

irrespective of their shift or commuting direction). They devised four version of heuristics based on an Iterated 

Local Search (ILS) framework with different strategies and features. The attained results reveal that local search 

with small time window strategy provide better results than other versions used. Bi-objective mixed integer 

linear programming formulation for mixed load SBRP is proposed by Mokhtari et.al (2018).  

Many studies have addressed bus-scheduling approach (Desrosiers et al. (1981, 1986a), Swersey and 

Ballard (1984), Graham and Nuttle (1986), Fügenschuh (2009), Kim et al. (2012)). Fügenschuh (2009) 

considered a school bus scheduling problem that allows the adjustment of school starting times and 

transshipment of students among trips. An integer programming model based on VRPTW (vehicle routing with 

time windows) was introduced and solved through branch-and-cut method with several pre-processing 

procedures and valid cuts.  

Kim et al. (2012) proposed a bus scheduling problem in which trips for each school are given separately. 

Each trip contains a sequence of stops and a related school. The problem is formulated as a vehicle routing 

problem with time windows. To assign buses to predefined trips, the authors adopted two approaches, namely 

the exact method for small cases and the heuristic approach for large cases. The findings derived from the above 

literature give a fairly good idea about the various aspects of bus routing problem while considering mixed load 

planning.  

 

Table 1. Features studied in the literature 

Reference 

Urba

n/ 

Rural 

Mixed 

load 

Flee

t 

mix 

Cost Constraint Area 

Load 

balan

cing 

Starting 

and ending 

location of 

the bus 

Share 

flexible 

depot 

Sub 

problems 

considered 

Bodin and 

Berman (1979) 
Rural  HO FC 

C, MRT 

TW 

Brentwood 

New York 
 

School 

 

BSS 

BRG 

RS 

Hargroves et al. 

(1981) 
Urban  HT 

FC 

 RC 

C 

MRT 

MNS 

Albemarle, 

Virginia 

 

School 

 

BRG 

RS 

Boweman et al. 

(1995) 
Urban 

 

HO 

FC 

SWD 

RC 

LB 

C 

MWT 

Ontario 

Canada 
 School 

 

BSS 

BRG 

Desrosiers et al. 

(1981-1986) 
Both 

 

HO 

FC 

RC 

C, MRT, 

MWT 

Drummondvi

lle, Canada 

 

Depot 

 

BSS 

BRG 

RS 

Chen et al. 

(1988) 
Rural  HO FC, RC C, MRT 

Choctaw 

Alabama 

 

Depot 

 

BRG 

BS 
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Li and Fu 

(2002) 
Urban 

 

HT 

FC,  

TSD 

RC 

C Hong Kong  Depot 

 

BRG 

Braca et al. 

(1997) 
Urban  HO FC 

C, MRT, TW, 

EPT, MSN 

Manhattan, 

New York 

 

Depot 

 

RG 

RS 

Spada et al. 

(2005) 
Rural  HT TL C, TW Switzerland 

 

School 

 

BRG 

RS 

Fügenschuh et 

al. (2009) 
Rural 

 

HO 

FC 

RC 

TW Germany 

 

Depot 

 

RS 

SBT 

Park et al. 

(2012) 
Rural  HO FC 

MRT 

TW 

C 

Artificial 

 

Depot 

 

BRG 

RS 

Campbell et al. 

(2015) 
Rural  HO 

RC 

FC 

MRT 

C 

TW 

Missouri 

USA 
 

Depot 

 

BRG 

RS 

Kang et al. 

(2015) 
Urban  HT 

RC 

FC 

 TSD 

MWT 

TW 

DDT 

C 

USA 

 

Depot 

 

BSS 

BRG 

RS 

Bögl et al. 

(2015) 
Urban  HO RC 

TW 

C 

MWT 

- 

 

Depot 

School 
 

BRG 

RS 

Hernan Caceres 

(2015) 

Sub 

Urban 

 HO 

RC 

FC 

TW 

C 

MRT 

New York 

United States 
 

Depot 

 

BRG 

RS 

Ellegood et al. 

(2015) 

Semi-

rural 
 HO RC 

C 

TW 

Missouri 

USA 
 

Depot 

 

BRG 

RS 

Silva et al. 

(2015) 
Rural  HO RC 

C 

MWT 

MRD 

Brazilian city 

 

School 

 

 

BSS 

BRG 

Chen et al. 

(2015) 
Urban 

 

HO, 

HT 

RC 

FC 

TW 

C 

from 

literature 

 

Depot 

 

BRG 

RS 
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MRT 

Yao et al. 

(2016) 

 

 HO RC 

MRD 

C 

- 

 

School 

 

BRG 

Lima et.al 

(2016) 
Rural  HT 

FC 

RC 

C 

Minas 

Gerais, 

Brazil 
 

Depot 

 

BRG 

      Lima et.al 

(2017)  
Rural  HT 

TSD 

LB 

FC 

C 

Artificial 

and  

from the 

literature 

(Park et. 

(2010) 

 

Depot  

 

BRG 

Caceresa et .al 

(2015) 
Urban 

 

HO 

N 

RC 

C 

MRT 

MWT 

Western 

New York 

 

Depot 

 

BRG 

Rodríguez-Parra 

et.al (2017) 
Urban  HO  

 

C Bogota 

 

School  

 

BRG 

RS  

Mokhtari et.al 

(2018) 
Rural  HT 

N 

TSD 

 

C 

MRT 

-  

 

Depot 

 

BRG 

Miranda et.al 

(2018) 
Rural  HT 

FC  

RC 

C 

    MWT 

     MRT 

Esp´ırito 

Santo, Brazil 

 

Depot 

 

BRG 

BSS 

 

Our study Urban  HO RC 

C 

 MWT 

        TW 

MNS 

Tehran 

Iran 

 Depot  

BSS 

BRG 

 Fleet mix  

. Homogeneous fleet (HO) 

. Heterogeneous fleet (HT) 

 Constraint 

. Vehicle capacity (C) 

. Maximum riding time (MRT) 

. School time window (TW) 

. Maximum walking time or 

distance to bus stop (MWT) 

. Earliest pick-up time (EPT) 

. Minimum student number to 

 Objective 

Fleet cost (FC) 

Routing cost (RC) 

Total student riding distance (TSD) 

Student walking distance (SWD) 

Load balancing (LB) 

Maximum route length (MRL) 

Child‘s time loss (TL) 

 Sub-problems considered in the 

literature 

Bus stop selection (BSS) 

Bus route generation (BRG) 

Route scheduling (RS) 

School bell time adjustment (SBT) 
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create a route (MSN) 

. Maximum riding distance of bus 

(MRD) 

. Depot departure time (DDT) 

. Maximum number of students in 

each stop (MNS) 

. Maximum route length (MRL) 

Number of bus (N) 

 

 

III. Problemdescription and mathematical model 
In this research, multiple schools, one type of student, potential bus stops, a set of garages, and identical buses 

(each of them with the same capacity) are taken into consideration. This study arose from the need to develop a 

daily transportation plan for bringing students from their home to their school. To do so, each student is 

allocated to an allowable bus stop while considering a defined walking distance. After that, each bus starts from 

the garage (starting location), picks up students from bus stop(s), delivers them to school, and finally returns to 

the garage (ending location). Each student has to be delivered to his/her respective school. Since the problem 

selects a set of bus stops and generates routes while considering mixed load effect, it is possible to assign 

students from different schools to the same bus. It is not necessary that starting and ending locations of a bus be 

the same, therefore, it potentially avoids long trips to return to the same garage. However, in order to prevent 

bus crowding in the same garage, an allowable number of parking spaces for each garage will be considered in 

the model. In order to make sense of the real case, two time constraints are presented in our model as follows: 

each bus should arrive at its related school before a defined latest arrival time and each stop cannot be visited by 

the bus before an earliest time.  

Let 𝐺, 𝑃+ and 𝑃− respectively define starting and ending locations of a bus, potential bus stops, and potential 

schools. 𝑃 is the union of potential schools and bus stops(𝑃 = 𝑃− ∪ 𝑃+), and 𝑁is the set of all nodes (𝑁 = 𝑃 ∪
𝐺).Travel time from node 𝑖to node 𝑗 is calculated by travel distance between two nodes multiplied by the speed 

of the bus. For the sake of simplicity, all buses move at the same speed.  

The objective function is to minimize the total travel distance of all routes. In our problem, school data consists 

of school location and only the latest possible times of bus arrival. More specifically, this study intends to pick 

up primary and secondary school students in such a way that each school can have a different time window.  

The most important constraints of our problem are as follows:  

1- Every student should walk from his/her home to one of the possible bus stops within a maximum walking 

distance. 

2- Each bus starts from a garage and ends in the garage which is closest to the last school it visited.  

3- Maximum allowable number of students for each bus stop does not exceed the limit𝑚𝑠. 

4-The number of buses coming back to a garage cannot violate the number of parking spaces at the garage 𝑃𝑔 . 

5- Each bus should arrive at its related school𝑖 ∈ 𝑃−  before the latest time𝑏𝑖 . We set upper bound on the time 

which a bus can deliver a student to his/her respective school.  

6- Service time of each stop must be after earliest time𝑎𝑖 , and if the bus arrives at the first stop before 𝑎𝑖 , it must 

wait.  

7-The load of each bus along the path does not exceed its given capacity.  

Among these items, constraints (1) and (3) take account of student convenience. Table 2 discusses the symbols 

used in the model.Figure 1a depicts an example of this problem. A student is denoted by a circle, anda potential 

bus stop is specified by a small square. A large black square represents a garage, while a trianglerepresents a 

school. Students are shown with the same color as their school. In this problem, a dotted line features the stop 

that a student can reach.A feasible (though not the optimal) solution is given in Figure 1b. In this figure, there 

are two routes denoted by red lines.Each route must start from a garage, pick up anumber of students from each 

stop, and transport them to the associated school prior to returning to the garage. The following assumptions 

have been considered in our problem:(1)each bus may carry the students of different schools at the same 

time;(2) each student must be picked up before being deliveredto the respective school;(3)each school can be 

visited by more than one bus, but each bus must visit each school once.  
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G2G1

S1
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G3
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S2

 

(a) Instance with possible allocation of students to the potential bus 

stops 

(b) Possible feasible solution 

Figure 1. Example school bus routing problem with mixed load effect 

 

Table 2. Indices, sets, parameters, and decision variablesused in mathematical model 

Indices 

𝑘 Bus index  

𝑖, 𝑗 Node indices 

𝑙 Student index  

Sets 

𝐺 Set of starting and ending depot locations (garage locations)  

𝐾 Set of buses 

𝑠 Set of students  

𝑃+ Set of potential pickup locations (bus stop locations) 

𝑃− Set of delivery locations (school locations) 

𝑃 = 𝑃− ∪ 𝑃+ Set of stops and schools 

𝑁 = 𝑃 ∪ 𝐺 Set of nodes 

Parameters 

𝑐 Bus capacity  

𝑏𝑖𝑔 𝑀 Large constant 

𝑎𝑖  Earliest arrival times to stop i P


  

𝑏𝑖  Latest arrival times to school i P


  

𝑎𝑝 Average pickup time at pickup points for each student 

𝑎𝑑 Average delivery time at delivery points for each student 
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ijC  Travel distance from node i to node j ( , )i j N  

𝑡𝑖𝑗  Travel time from node i to j ( , )i j N  

ils  A parameter equal to 1 if student l  can reach stop i P


 , and 0 otherwise 

ilq  
A parameter equal to 1 if student l  is related to the school i P


 , and 0 

otherwise 

gP  The number of parking spaces at the garage 𝑔 

𝑚𝑠 The maximum number of allowable students for each stop  

𝑂𝑖 =  𝑆|𝑠𝑖𝑙 = 1  The set of students that can be assigned to stop 𝑖 

𝑊𝑖 =  𝑆|𝑞𝑖𝑙 = 1  The set of students that should be delivered to school 𝑖 

Decision variables 

X
ijk  1 if bus 𝑘 traverses the arc from node𝑖to𝑗 ( , )i j N  , and 0 otherwise 

iky  1 if the bus 𝑘 visits stop 𝑖, 0 otherwise  

k
ilZ  1 if student 𝑙 is picked up by bus𝑘 from stop𝑖, and 0 otherwise 

𝑇𝑖𝑘  Arrival time of bus 𝑘 to node ( )i i N   

ikL  The load of bus 𝑘after leaving node𝑖 ( )i P   

ikh  1 If bus 𝑘visits school i P


 , and 0 otherwise  

k
jl

D  1 if student 𝑙 is delivered by bus 𝑘to school 𝑗, and 0 otherwise 

The mathematical programming formulation of the school bus routing problem is as follows: 

 

ij ijk

i N j N k K

Min t X

  

   (1) 

S.t.   

( )

jik ijk ik

j N j P P

X X y

   

    ,i P k K    (2) 

( )

jik ijk ik

j Nj P P

X X h

   

    ,i P k K    (3) 

1ijk

i G j P

X

 

  k K   (4) 

1jik

i Gj P

X
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0ijk

i G j G

X
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ik jk il
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(1 )ik i ikT a y bigM  
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X Pgijk

k Ki P





  j G   (23) 

{0,1}iky   ,i P k K    (24) 

{0,1}ijkX   , , ,i j N i j k K     (25) 

{0,1}k
ilZ   , ,i P l S k K     (26) 

{0,1}k
jl

D   , ,j P l S k K     (27) 

{0,1}ikh 
 ,i P k K    (28) 

{0,1}lkr   ,l S k K    (29) 

 

The objective function (1) minimizes the total travel time traversed by all buses. Constraints (2) ensure that a 

bus entering the stop node should leave it as well. The same constraints for school node are shown in Equation 

(3). Constraints (4) represent that a bus cannot start more than once from its home location (garage). Similarly, 

constraints (5) guarantee that a bus cannot arrive at its final location (garage) more than once. Infact, some buses 

could remain unused. Constraints (6) demand that no transferring from garage to garage is possible directly. 

Constraints (7) impose that each stop is visited no more than once. Constraints (8) enforce that each student is 
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picked up from the stop to which he/she walks. Constraints (9) specify that picking up a student from a non-

visited stop by bus𝑘 is not possible. Constraints (10) guarantee that stops are not visited unnecessarily. 

Constraints (11) ensure that each student is delivered to its respective school. Constraints (12) guarantee that 

whenever a student is assigned to a bus, the school associated with this student is also visited by the same bus. 

Constraints (13) guarantee that schools are not visited unnecessarily. Constraints (14) impose that number of 

pickup and delivery students in each route is equal. Constraints (15) state that each student should be picked up 

exactly once. Constraints (16) ensure that number of allocated students to each allowable stop must not be more 

than𝑚𝑠. The next four sets of constraints (17-a), (17-b), (17-c) and (17-d) are load constraints. Constraints (17-

b) state that when a node 𝑖 is followed by a pickup node 𝑗 ∈ 𝑃+, the number of students after visiting node 𝑗 is 

greater than or equal to the summation of  the number of students after servicing node𝑖  and number of picked 

up students in the node 𝑗. Similar to constraints (17-b), inequality (17-c) proves that when the node 𝑖 is followed 

by the delivery node, 𝑗 ∈ 𝑃− the number of students after visited node 𝑗 is greater than or equal to the number of 

students after visiting node 𝑖 minus the number of students delivered to the node 𝑗. In practice, constraints (17-b) 

and (17-c) determine load on a bus just after leaving each node on its route. Constraints (17-d) ensure the 

capacity of buses. Constraints (18)-(23) are time-related constraints. The arrival time of each bus to a node in 𝑝 

is calculated in Constraints (18). Constraints (19) are similar to constraints (18), but they are for the routes from 

garage to stop. Constraints (20) ensure that pick up of students by a bus is before his/her delivery. Constraints 

(21) and (22) indicate the time window for stops and schools, respectively. Constraints (23) restrict the number 

of available parking places in each garage. Finally, variables and their types are declared in (24)-(29).  

 

IV. Solution strategy 

SBRP is a generalization of vehicle routing problem (VRP), known to be an NP-hard problem. 

Although the exact methods suggested in the literature are capable of obtaining optimal solutions, they can be 

used only to solve problems with a relatively small number of stops/students. This is relatively far from real 

cases that involve hundreds of stops/students.Therefore, heuristic approaches are needed to cope with large 

instances and to achieve near-optimal solutions in a reasonable amount of time. Several variants of heuristics, 

based on local search contexts, have been applied to VRP. Local search operators create regular moves that 

slightly alter the current solution. These moves could change the requests within one or two different routes at 

the same time. This kind of operator can search through a large number of solutions in a short timewhilecausing 

a small change at each iteration. This approach also has some limitations, so that, for instance, applying a tight 

constraint to the problem and implementing local search operator are not sufficiently profitable 

(Ropke&Pisinger, 2006). Thus, in this case, moving from one promising area to another favorable point is 

problematic. There are alternative strategies to cope with this problem. To tackle this issue, one strategy is to use 

the large standard move instead of incorporating small moves. Unsurprisingly, employing this case requires an 

expensive computing time, compared with the small standard move strategy; nevertheless, it helps to obtain 

more desirable results in terms of the quality of thesolution. Therefore, instead of applying small changesto the 

solution, it is more effective to use large moves, resulting in more exploration in the solution space. To the best 

of our knowledge, the application of largeneighborhood search in an SBRP context is novel, and its 

methodology is known to have managed to solve a variety of VRPs.Hence, an argument can be made in favor of 

exploring very large spaces in the solution using large neighborhood search (LNS). LNS simply consists of a set 

of neighbourhoods meant to destroy and rebuild the solution. Destroy and repair operators canbe employed in 

different ways in an incumbent solution. The enriched version of LNS, i.e.,adaptive large neighborhoodsearch 

(ALNS), was introduced byRopke&Pisinger, 2006). ALNS extends LNS by considering a set of removal and 

insertion heuristics in the search space. In each iteration, removal and insertion operators are selected on the 

basis of probabilities. This probability is updated dynamically according to the performance reached by each 

operator in a preceding iteration. This inventive aspect of LNS, proposed in this paper,provides the possibility 

forexploring the whole neighborhood in the search space. Themechanism of ALNS algorithm is shown in 

Algorithm 1.The ALNS metaheuristic presented here is based on two stages, namely construction stage and 

improvement stage. In the first stage, a student allocation problem is solved for each stop. After student 

allocation heuristic is implemented, a variant of the nearest neighborhoodconstructive heuristic is applied to 

generatea feasibleinitial solution. The solution obtained through the initial solution serves as input for thesecond 

stage, i.e. improvement stage (Line 7 of pseudo-code). The improvement stage consists of two levels that are 

executed sequentially through a number of iterations. More specifically, the algorithm tries to improve the 

solutionby using adaptive large neighborhoodheuristics in the primary level (Line 8 of pseudo-code). More 

precisely, at each iteration, a number ofq stops are disconnected via the removal heuristic and are placed into the 

stop pool, called U bank list. Then, using insertion heuristic, it inserts the stops from Ubank into the solution. 

Note that during removal and insertion operations, it might happen that different students from different schools 

are inserted in the same route. In this case,while preserving feasibility, the school associated with the student 

also needs to be inserted in the cheapest position of thecurrentroute. 
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The value of  𝑞  is the key parameter that determines the scope of our solution approach. In other 

words, parameter 𝑞 indicates neighborhood's size. If the size of 𝑞 is equal with zero, no search will occur in 

solution space. In contrast, when the value of 𝑞 is equal to the cardinality of 𝑃+, the algorithm acts similar to a 

multi-start, and the problem is solved from scratch. In addition, this value can be dependent on the behavior of 

solution at each iteration. In order to make a balance between diversification and intensification mechanisms, 

the following procedure is applied for updating the value of  𝑞. Initially, the value of 𝑞 is set to 𝑞𝑚𝑖𝑛  (line 17 of 

pseudo-code) and systematically altered during the adaptive large neighborhood search algorithm. More 

precisely, the value of 𝑞 is modified based on the solution created during the previous iteration. For instance, if 

for a number of iterations, an acceptable solution is obtained, the value of 𝑞 should be kept in the low 

level,𝑞𝑚𝑖𝑛 ,in order to keep intensification. In contrast, for number of iterations worse solution is appeared, the 

value of  𝑞must be increased in order to investigate the solution space more efficiently. As a result, large 

numbers of 𝑞 are removed and then re-inserted. It can help in achieving a suitable diversification strategy during 

the search. 

Due to considering a set of removal and insertion heuristics, the choice of these heuristics are governed 

by a roulette wheel mechanism according to their past successfulbehavior. We also implement the Meta-destroy 

operator when after 𝛿consecutive iterations; no improvement is made in the best solution. This operator works 

byimplementing two destroy operators sequentially, creating more diversification. It should be noted that this 

procedure is independent of performing aset of removal and insertion steps in each segment. More precisely, in 

each segment,the number of successive non-improving solutions is counted from the beginning of the 

improvement stage, and if this number is greater than 𝛿the Meta-destroyoperator isexecuted (the value of 𝛿is 

lower than the number of iterations in each segment).  

Once the removal and insertion operators are applied, Redistribution operator is considered in the 

second level whenever a new best solution is found (line 15 of pseudo-code). The reasoning is that applying 

both removal and insertion heuristicshelps reconstruct a large part of the solution, such thata dispersed 

distribution of students between routes occurs. In order to cope with these situations, redistribution operator 

attempts to optimize the current load distribution. This operator tries to transfer students between routes while 

preserving feasibility. In practice, this operator is meant to minimize the corresponding deviation of the loading 

value of the routes through making a desirable distribution of students among the routes.  

ALNS algorithm demonstrates a very good performance for large scale optimization problems.It has 

provided especially great resultsfor vehicle routing problems. Such successful applications of ALNS on VRP 

have inspired the present study to employ it for school bus routing problem with the mixed load plan.  

 

Algorithm 1. AdaptiveLarge Neighborhood Search metaheuristic 

 Input:U: set of all potential stops, G: setof all garages,𝑃−
:set of all schools, s: set of all students 

 

𝑅(set of Removal heuristics), I (set of Insertion heuristics), q (number of stops/ requests to be 

removed  1,...nq  ),𝑞𝑚𝑎𝑥 (maximum number of stops to be removed), 𝑃+
(Listof stops to which 

students are allocated), 𝜋(initial score of heuristic (𝐼⋃𝑅)),𝑤(initial weight of removal and insertion 

heuristic (𝐼⋃𝑅)) 

 
𝜌(the number of iterations), 𝜂(parameter to set  𝑞𝑚𝑎𝑥) 

1    // Stage 1: Construction phase 

2 
𝑃+

=all student allocated to the bus stop                                        // Allocating using student 

allocation heuristic  

3 
ox =Route generation ( , , , )P s G P 

// Generating route using NNg heuristic  

4 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑜 

5 𝑓𝑏𝑒𝑠𝑡 = 𝑓(𝑥0) 
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6 𝑥𝑎𝑐𝑡 = 𝑥𝑜 

7 // Stage 2: Improvement phase 

8 /// 2.1 Set of removal and insertion heuristics in the first level
 

9 𝑞 = 𝑞𝑚𝑖𝑛 initialize the roulette wheel; initialize the adaptive parameters(𝜋, 𝑤)
 

1

0 
While Stopping criterion 𝜌  is not met do

 

1

1 

Roulette wheel mechanism: Select one Removal heuristic𝒉𝒓𝒆𝒎 ∈ 𝑹and one Insertion 

heuristic𝒉𝒊𝒏𝒔 ∈ 𝑰or twoDestroy operators (if𝑥𝑏𝑒𝑠𝑡has not been improved in last consecutive𝛿 

iterations)
 

1

2 
Remove 𝑞requestsfrom solution 𝑥𝑎𝑐𝑡 using 𝑟𝑒𝑚,creating a partial solution 

1

3 
Insert 𝑞 customers into the partial solution using𝑖𝑛𝑠,creating a solution *

actx  

1

2 
If accept *( , )act actx x then 

1

4 
/// 2.2 Redistribution operator in the second level  

1

5 
** *( )act actx Redistribution x // Applying Redistribution heuristic to *

actx  

1

6 

**
act actx x  

1

7 
minq q  

1

8 
 Else  

 

1

9 
𝑞 = 𝑞 + 1 

2

0 
        If maxq q  

2

1 

max( )
q

q


  

2

2 
        End if

 

2 End if 
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3 

2

4 
        If **( )act bestf x f  

2

5 

**
best actx x  

2

6 
         End if

 

2

7 
Update the roulette wheel(𝜋, 𝑤)

 

2

8 
End while 

2

9 
         End if 

 

4.1. Constructingan initial solution  

The key concept of the construction stage is togenerate a feasible initial solution.Constructing an initial 

solution for the SBRP consists of three steps: assigning each student to an allowable stop, grouping allowable 

stops based onthe closest garage, and generating routes for allowable stops of each garage. To do so, three 

stages are sequentially performedas follows. Each student is first allocated to anallowable stopusing student 

allocation heuristic in the first step. After allocatingall existing students to the possible bus stop, the potential 

stops with their respective students are specified. In thesecondstep, each identified stopis assigned to the closest 

garage.Thus, the distribution of each stop to a given garage is obtained in advance.Then, the modified nearest 

neighborhood with the greedy randomized adaptive procedure (NNgr) is employed to generate a route. Greedy 

randomized selection reflects a balance between greediness and randomness approaches. To this aim, instead of 

using simple greedy nearest neighborhood heuristic, our version considers some modifications to construct 

routes in the following twoways.(1) For each route (i.e., bus) started from a given garage, the next node (i.e., 

stop) is selected randomly from the restricted candidate list(RCL) containing 𝛼 first closest non-visited 

stops,belonging to that garage.It is worth mentioning that the non-visited stops for each given garage are those 

that students are assigned toit in advance. The size of RCL, i.e. the value of𝛼, is a parameter that controls the 

value of greediness and randomness.If𝛼is set to a small value, the construction is extremely in the greedy 

fashion. In contrast, if𝛼 is large (equal to a number of non-visited stops in the solution), the construction is 

completely random.(2) Feasibility checkis carried outwith respect to bothallowablecapacity of thebus and school 

time window constraints. If afeasible solution is generated without violating the above constraints, the candidate 

stop will be addedtothe route. Otherwise, the generated route returns to the associated school to 

deliverstudentsand,finally, returns to the closest garage.Returning to the closest garage prevents long trips that 

may result from returning to the same garage the bus started from.If the capacity of the nearest garage is already 

filled, the next closest garage is selected.As the starting and ending locations of the bus are not necessarily the 

same, our problem is the Open Vehicle Routing Problem.  

A new attempt to apply the twoways is made until all non-visited stops are considered for each garage. 

Since each bus might pick up students from different schools, all associated schools must be inserted at the end 

of the considered routeinthe cheapest way possible.More importantly, to make effective time saving,data 

structure is employed andupdated throughoutthe operation of NNgrheuristic,which consists of information 

related to load and travel time of a busriding along route k. The example in Figure 2 clarifies the operation of 

thedata structure. Along the operation of NNgr for each stop,the following information isupdated for each stop 

as follows:visited stop (S), number of studentsallocated to the stop (AS), load of bus after visiting the 

currentstop (LS),load of bus after visiting the next stop (LN),remaining capacity after visiting the current stop 

(R), remaining capacity after visiting the nextstop (RC), arrival time at the current stop(AT), andallowable 

remaining time to reachthe respective school(RT). This simple data structure procedure allows to efficiently 

check both capacity and school time window constraints prior to selectingany stop. In this example, it is 

assumed that thecapacity of the bus is equal to 6. The solid line shows the generated route.It is supposed that 
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stop B is acandidate to be inserted in the route. As seen from Table3, the value of LA and LB is 5 and 7, 

respectively. This indicates that inserting stop B inthe route contributes to making an infeasible solution.As a 

result, instead of visiting stop B,the bus must come back to the respective schools.  

 

A

B

TW:(Before-7.20) am

TW:(Before-8.00) am

6.40 am

10 min

25 min

10 min

 
Figure 2. Example for constructing an initial solution 

 

Table 3. Data structure   

Stop(S) AS LS LN R RC AT 
(RT)Travel time to 

school 1 

(RT) Travel time to 

school 2 

A 1 5 7 1 -1 6.40 10 min 25 min 

 

4.2. Adaptive large neigbourhood search (ALNS) 

In general, ALNS heuristic is aniterative process that consists of destruction and insertion operators. In practice, 

at every iteration,a removal heuristic is utilized to remove a number of stops (i.e. requests) from the current 

solution;then aninsertion heuristic is employed to insert them back to the current solution so as to construct a 

new solution(for more information, the reader is referred toRopke&Pisinger, 2006). Removal heuristics are 

described inSection 4.2.1, and insertion heuristics are discussed in Section 4.2.2. 

 

4.2.1. Removal operators  

Removal operator is the backbone of the algorithm, where at each iteration, 𝑞 stops are removed and added to 

the list U. These operators must be selected in such a way that they efficiently explorethe whole search space or 

at least its interesting parts. Thus, it would make no sense to only focus on special kinds of destroyoperators. 

Therefore,it is needed to consider diversification and intensification operators in a structured 

way.Thisstudyemploysvarious kinds of removal heuristics allowing both diversification and intensification 

strategies. Three removal heuristics have been inspired by Ropke, and others are new and adapted according to 

the problem'sconsiderations (SBRP). 

 Shaw removal 
The basic idea of Shaw removal was proposed byRopke&Pisinger (2006). This heuristic operatesbased on the 

similarity idea.In this approach, it seems reasonable to select stops that are somehow similar, thus making 

iteasier to replace them inanother place in the hope of improving the solution.If we insert the requests that are 

different from others, it might not obtain a gain when inserting themin thecurrentsolution, becauseit may be 

inserted in a bad or the original position. 

The degree of similarity between stops𝑖 and𝑗 is calculated by relatedness measure𝑅(𝑖, 𝑗)that correspondsto their 

distance from each other as follows: 2 2( , ) ( ) ( )i j i jR i j x x y y    .To do so, one request is selected randomly 

from the list U. If the list is empty, the following procedure is applied tothe selected candidate stop. In fact, 

instead of selecting one stop randomly, as presented by Shaw etal. (2006), we select the stop that produces a 

higher possibility ofcost saving.To do so, one route is randomly selected in advance. After that, for each 

stop𝑖thatis included in the considered route, the value of saving is calculated as follows: 

𝑠 𝑖 = 𝑑𝑖𝑠𝑡 𝑝𝑟𝑒𝑣 𝑖 , 𝑖 + 𝑑𝑖𝑠𝑡 𝑖, 𝑛𝑒𝑥𝑡 𝑖  − 𝑑𝑖𝑠𝑡(𝑛𝑒𝑥𝑡 𝑖 −

𝑝𝑟𝑒𝑣 𝑖 ),where𝑝𝑟𝑒𝑣(𝑖)and𝑛𝑒𝑥𝑡(𝑖)arerespectively the predecessor and successor of anode𝑖in the considered 

route.Node candidatesare sorted indecreasing order.The underlying idea is that the request resulting in a greater 
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saving for the solution has more potential to be selected, and it canimprove the solution quickly if inserted in 

another position. Afterward, the stop with the maximum saving is selected to be transferredto list U. In the 

second step, the degree of similarity between the selected stop in the list U and the other 𝑞 − 1 stops that are not 

removed from the current solution is calculated.The process of Shaw removal ispresented in Algorithm 2.Letybe 

a random parameter between  0, 1   and𝑝define the degree of randomness to the selected request. A lower value 

of𝑝forces the heuristic to choose more similar stops whereas a high value allows selectingless similar requests.  

 

Algorithm 2.  Shaw Removal (inspired by Ropke) 

Function Shaw removal { , ,q }actx solution p R P     

Request: r = selected request from actx  using the saving method; 

Set of Request: {r}U  ; 

While𝑈 ≤ 𝑞do  

r = selected request from U; 

Array: L = an array containing all request from 
actx not in U; 

Sort L such that  𝑖 ≤ 𝑗 → 𝑅(𝑟, 𝐿[𝑖])  < 𝑅(𝑟, 𝐿[ 𝑗]); 

Choose a random number y from the interval [0,1); 

{ ([y )};pU U L L   

End while  

Remove the requests in U from 
actx ; 

Shaw removal based on similarity of school of the student 

This operator uses some of ideas from the Shaw removal heuristic. The only difference is that instead of using 

relatedness measurement 𝑅(𝑖, 𝑗)between two stops based on distance, we consider the degree of similarity with 

respect to schools. More formally, this heuristic attempts to remove a set of stops that are similar based on the 

variety of schools with respect to their assigned students, as it is expected to be rationally easy to reshuffle these 

stops and thereby avoiding the unnecessary inclusion of a school. In practice, the degree of similarity indicates 

how much two stops are similar based on the schools of their students. In doing so, like Shaw removal the 

procedure primarily selects a random stop to remove and in the subsequent iterations it selects stops that are 

similar to the already removed requests based on the on the schools of their students. The degree of similarity 

between two stops is given by: 

𝑑 𝑆1, 𝑆2 =   𝑦𝑠1
𝑘 − 𝑦𝑠2

𝑘  

𝑘

 (30) 

Let 𝑦𝑠1
𝑘   determines whether stop𝑠1 has any student of the school𝑘. Therefore 𝑦𝑠1

𝑘 takes value of 1 if stop 𝑠1 has 

a student of school k, and 0 otherwise. Using𝑦𝑠
𝑘 , we can easily obtain the degree of similarity between two 

requests. The lower 𝑑(𝑆1 , 𝑆2)indicate that two stops (𝑠1 𝑎𝑛𝑑 𝑠2) are more related. This procedure proceeds until 

𝑞 stops are selected and transferred to the U bank. 

Worst removal 

This heuristic is inspiredby Ropke&Pisinger(2006). It removes q stops withhighest gains. In practice, it 

removesrequests that are rather expensive and thus inserts them in anotherpositionin the hopeof findinga better 

solution. Let the value of  𝑓𝑖
+bethe cost of thesolutionwhen therequest𝑖isin the current solution, and 𝑓𝑖

−be the 

cost of solution without considering therequest𝑖.  𝑐𝑜𝑠𝑡 𝑖, 𝑥𝑎𝑐𝑡  = ∆𝑓𝑖defines the difference between  𝑓𝑖
+ and 𝑓𝑖

−. 

This heuristic is randomized through setting the parameter p. More precisely, a lower value of p forces the 

heuristic to select a requestfeatured with a high value of gain, while lower values of 𝑝allowschoosing requests 

with low values of gain.  

Algorithm 3.Worst Removal (inspired by Ropke) 
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Function Worst Removal { , ,q }actx solutionS p R P    ; 

while 𝑞 > 0do 

Array: L = All planned requests  i, sorted by descending  𝑐𝑜𝑠𝑡 𝑖, 𝑥𝑎𝑐𝑡  = ∆𝑓𝑖 ; 

Choose a random number y from the interval [0,1); 

Request: ([y )pr L L  

remove r from solution S; 

1q q  ; 

end while 

 

Random removal 

Random removal operator - introduced by Ropke&Pisinger(2006) is used to create appropriate diversification. 

The idea behind this operator is to introduce a degree of randomization in the solution space.It selects some 

stops randomly and inserts them into the list U. Since this operator allows one to diversifythe search, it would be 

very helpful to overcome local optima.  

 

 

Least used bus removal (LUB) 

This operator tends to remove the bus, or the route, with the smallest load.A load of thebus is the number of 

picked up students in the route. In fact, the route with the least occupied capacity is selected, and all stops 

contained in the route are removed. This removal operator aims at completely destroying the route.  

Single load route removal (SLR) 

This heuristic randomly selects a route that only containsstudentsbelonging toa single school(i.e. single load 

route)and attempts to remove the 𝑞stops included in the route. This heuristic pursuesa similar strategy as that 

adopted in the least used bus removal. For both single load route and the least used bus removal heuristics, if the 

number of request𝑖 in the candidate route k is less than 𝑞, another route will be selected. It should be stated that 

this operator strives to reducesingle load routes.  

4.2.2. Insertion operators 

The purpose of these heuristics is to construct the partially destroyed solution through inserting requests from 

the list U into the existing route if possible.Two key points need to be taken into account while conducting the 

insertion procedure. Firstly, the request shouldbe inserted in any feasible position.Feasibility should be 

maintained with respect to capacity constraint and school time window during the insertion process.Secondly, 

while insertion happens for the stop inthe candidate route,the heuristic must check the stop to see whether the 

related school is already inthe new route or not. If it is not, theschool needs to be inserted in the considered route 

in thecheapestpossible position. More importantly, during the insertion operation when the candidate stop to be 

inserted has the studentsfrom other schools, the cost of insertion is the summation of cost created by inserted 

that stop and the respective school(s).  

Althoughpursuing the above procedures is time-consuming and increases the complexity of the algorithm, it 

promotes diversification. To this aim, our insertion heuristic follows two strategies, namely local and global 

insertions. The first one means that astop of the list U is only allowed to be inserted in those routesin which their 

related school is located.In contrast, in the global insertion,regardless of the existence or absence of a related 

school, unplanned stops can be inserted at any best position of the existing route. In this study,basic greedy, 

regret 2 and regret 3 operators are employed based on global insertion method, while basic greedy based on the 

largest demandand the second-bestinsertion areexecuted usinglocal insertion. 

Basic greedy heuristic  

This heuristic has a greedy nature. The basic greedy heuristic looks for the cheapest insertion position for all 

unserved requests in the listU. Let ∆𝑓𝑖𝑘be the value of theobjective function when therequest𝑖is inserted in the 

route 𝑘. It should be carried outin such a way that the cost of thesolution is increased minimally.Thus, the 

cheapest insertion cost is formulated as 𝐶(𝑖 ,𝑥)
+ = 𝑚𝑖𝑛𝑘𝜖𝑅 (∆𝑓𝑖𝑘 ). This procedure continues until all unserved 

stops in the listU have been inserted.  

Basic greedy based on the largest demand insertion  
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This heuristic only differsfrom the basic greedy in selecting a request from the U-bank. In fact, the basic greedy 

heuristic simply selects the first stop from the list U and inserts it in the cheapest position, whereas basic greedy 

based on the largest demand tries to select unplanned stops from the list Ubased on the amount of demands.As a 

result,the request with the largest demand in the list U is the first to be inserted.  

Second-best insertion  

This heuristic is slightly different from basic greedy, for it tries to insert the request in thesecond-bestposition in 

order tocreate diversification. 

Regret-K heuristic  

Dissimilar to above greedy insertion, the regret heuristic does not pursue the best insertion position policy. In 

fact, this heuristic is devised to improve the myopic behavior of greedy insertion heuristic. This heuristic 

attempts to add the stops that create maximum difference, concerning the cost of the inserting in best position 

to𝑘𝑡best route position. The main concept in this method is to make a priority to insert a stop in the first stage 

when it will lead to more costs if inserted later. In doing so, the least insertion cost for all demands in U is 

calculated in advance, same step like basic greedy heuristic can be pursued. Afterward, the summation of the 

difference between best insertion (first element) and second best to 𝑘𝑡best route (𝑘𝑡element) is calculated. 

This difference is addressed in the literature as regret value. ) for more detail see Ropke&Pisinger (2006)).The 

regret-K heuristicadopted in this paper assumes the values of 2 and 3 for 𝑘, meaning that we calculate the 

difference between the second best and the best insertion positions for 𝑘 equal to 2, and the summation of 

differences between the third bestthe second best, and the best insertion positions for k equal to 3. In the all 

insertion operators, if there is not any feasible route for insertion, new routes are created to visit remaining stops 

in the list U. 

 

4.3. Redistribution operator  

Due to employing a set of large neighborhood search heuristics in the previous stage, distribution of students 

between routes could lose its balance. This means that some routes contain a large number of students, and 

othersinclude smallernumbers. To tackle this situation, a redistribution operator helps balance the current 

capacity to the current solution. At the beginning, a list of routesis developed in decreasing order on the basis of 

the occupied capacity. After that, for the first 𝛽 routes in the list,an attempt is made to move the student to 

another allowable stop in another route, if possible.In this study, this value is set to 25% (it is found through 

pilot study). The only exception is when the number of routes generated in the incumbent solution is less than 

4.In this case,redistribution operator is deactivated since a lower number of routes causes redistribution operator 

to have acorrespondingly lower efficiency in transferring students. Transferring studentsto any new route is 

possible when two conditions are met:first, ensuring that an allowable stopexists for the candidate 

student;second, making sure that a respective school is considered too. The latter means that once there is the 

possibility to transfera student, a related school must also be present at the end of the route. If this is not 

fulfilled, an associated school needs to be inserted.  

 

4.4. Adaptive search engine 

Adaptive weight adjustment assesses the importance of each removal and insertion on the basis of its 

performance to produce a profitablesolution. At each iteration of ALNS heuristic, one removal and one insertion 

operatorneed to be selected. Choosing different removal and insertion operators at each iteration has some 

advantages. Firstly, it prompts to diversify the search in an efficient way. Secondly, it leads the algorithm to find 

better results. It happens that the combination of one insertion with one removal might perform well for some 

instances, and in other instances some other removal and insertion operators might behave better. This 

alternation between different removal and insertion heuristics yieldsan experimentally robust heuristic. Finally, 

it can help to make a good balance between computing time and solution quality, since implementing a number 

of insertion or removal operators individuallyis time-consuming. The question is how the algorithm selects 

removal and insertion operators. The selection of removal and insertion is governed by a roulette-wheel 

mechanism whereby each of the operators is assigned a weight. The probability of selecting each heuristic is 

dependent on how successfully it has performed in previous iterations. More precisely, each operator is assigned 

a score and the operator that yields a better solution has a higher probability of being selected again. It means 

that the operator with a poor performance still has a small chance of being chosen. In our study, selecting 

removal and insertion heuristics at each iteration is carried out through pairwise selection mechanism.  

 

4.4.1. Adaptive weight adjustment 

In this section, we explain the methods ofchoosing removal and insertion heuristics thatisbased on 

pairwise selection method. More precisely the majority of literature concentrate on independent selection of 

removal and insertion operators (see Ropke&Pisinger, 2006). This leads to missing the opportunity of 

identifying joint performance of removal and insertion on the performance of metaheuristic.  Because of this, it 
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attempts to consider the joint performance of a pair of operators and correspondingly assigns weight𝜌𝑑𝑟 to the 

operators based on their performance. At the outset of a segment, all pairs have the same weight 𝜌𝑑𝑟 = 1andall 

scoresare set to 0. During each segment, every time that a pair of removal and insertion is applied, its score is 

increased by the parameters 𝜍1
∗, 𝜍2

∗, 𝜍3
∗depending on its performance. If the pair finds a solution that 

improves𝑠𝑏𝑒𝑠𝑡 , the score of thepair is increased by 𝜍1
∗; in case the solution is improved, though not better than 

the best solution, the score of thepair is increased by 𝜍2
∗,  and finally the worse solution results in the 

scoreincrease by𝜍3
∗. After each segment is terminated, the weight is updated as follows: 

(1 )
max(1,O )

dr
dr dr

ij

   



    (31) 

Like Ropke&Pisinger(2006) method, the value of𝛾reflects the reaction factor,𝑂𝑖𝑗
∗ specifies the number of times 

the pair of removal and insertion 𝑖 is applied tosegment𝑗, and Ψ𝑑𝑟 represents the score of each pair of removal 

and insertion. Better results achieved by each pair are assigned greater weights and,therefore,the pair has a 

higher likelihood for selection. Let 𝑛𝑑and 𝑛𝑟be the number of destroy and repair operators, respectively. At each 

iteration, the roulette wheel mechanism is utilized to choose one pair of removal and insertion operators with 

probability

1 1

dr
dr nd nr

dr

d r





 

 


. 

 

4.5. Acceptance and stopping criteria 

Another important component in an ALNS metaheurisitc is related to the solution acceptance rule. 

Once a new solution is generated through destroying and rebuilding operators, the acceptance criterion rule is 

used to decide whether the new solution is accepted or not. There are different types of acceptance methods. The 

better acceptance method accepts a solution only when it is better than the previous one. This simple acceptance 

rule promotes intensification; however, it has a tendency to be stuck in local optima. To this aim, not limiting 

algorithm by accepting only improving solutions seems to be a reasonable idea for escaping local optima. To 

make a balance between intensification and diversification, it seems sensible to occasionally consider the worse 

solution as well. In this regard, the judgment of accepting a new solution is made according to simulated 

annealing method (Kirkpatrick, Gelatt, and Vecchi 1983). If a new solution / ( )f s is better than the previous one

( )f s , search continues with asolution𝑓/(𝑠). Otherwise, the worse solution 𝑓/(𝑠) is accepted with 

probability: 𝑃 = 𝑒𝑥𝑝 (
𝑓 𝑠 −𝑓(𝑠′ )

𝑇
), where 𝑓/ 𝑠 and 𝑓(𝑠)respectively denote the objective function of the new 

and incumbent solutions, and 𝑇 > 0signifies the temperature parameter. The process starts from the initial 

temperature 𝑇𝑠𝑡𝑎𝑟𝑡 and the temperature is gradually decreased by replacing 𝑇 = 𝑇 × 𝐶at each iteration, where 

0 < 𝑐 < 1 and is used to represent a cooling factor parameter. This decline during the operation of algorithm 

implies that a non-improving solution is less likelyto be selected in subsequent iterations. It is important to note 

that the desirable value of 𝑇𝑠𝑡𝑎𝑟𝑡 depends directly on the problem in question. Hence, instead of considering 

𝑇𝑠𝑡𝑎𝑟𝑡 a fixed parameter, we calculate its initial value using the results obtained in the initial solution ox (this idea 

was suggested by Dayarian etal. (2013)). In effect, the initial temperature is set to
−𝑤𝑥0

ln ( 0.5)
. This formulation allows 

that 𝑤% worse solutions, here it is set to 5%, be accepted with a probability of 50%.  The value of 

parameter𝑤needs to be determined.  

5. Experimental analysis 

Our experimental computations consist of two parts. On primary stage, (sections 5.2 and 5.3) calibration is 

carried out in order to determine best parameters and also appropriate operators that significantly influence the 

metaheuristic's performance. For both sections 5.1 and 5.2, the testing set was made up of 10 instances (4 

instances from set S, 4 instances from set M, and 2 instances from set L).  Having obtained best parameter 

settings the analysis is performed to investigate the effect of single load and mixed load structure on the quality 

of the solution (minimizing total travelling time). Finally, a comparison is carried out with current literature in 

this area forunderstanding the main effect of mixed load strategy. 

 

5.1. Instance generation 
Since the presented problem has not been considered earlier, no test instances were available in the 

literature. For this purpose, new data sets were generated to conduct experiments. The data set contains 100 

instances. The problem size of this data set varies according to the number of garages ranging from 2 to 5, the 

number of schools ranging from 1 to 7, the number of stops ranging from 5 to 50, the number of students 

ranging from 25 to 250, and the walking distance ranging from 5 to 25. Our data set consists of three sets, 

including small, medium and large instances. Small instances have 5 to 10 stops, while medium and large 
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instances have between 15 to 30 and 35 to 55 stops, respectively. In order to avoid complexity to generate 

instances, the number of garage and number of students are calculated based on the number of stops.  

To generate the data set, 6 parameters per instance should be defined in the primary stage: 𝑛𝑔(the 

number of garages),𝑛  (the number of schools), 𝑛𝑝  (the number of stops), 𝑛𝑠(the number of students), and 𝑤𝑚𝑎𝑥  

(maximum walking distance for each student to reach a bus stop). All instances are generated and scattered in 

the Euclidean square between (0,0) and(𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 ). In order to make dataset similar to the real world, the 

values of (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 )are set to (80 *80 km). Each school's coordinates are generated in the area of (20km 

×60km) with respect to the center of Euclidian square. Correspondingly,the coordinates of each stop are 

generated in the interval of  𝑤, 𝑥𝑚𝑎𝑥 − 𝑤 , (𝑤, 𝑦𝑚𝑎𝑥 − 𝑤). For each generated stop, the coordinates of each 

student is obtained based on the angle 𝛼𝑗 ∈  0,2𝜋 and walking distance𝑤 from the stop. Thus, the coordinates of 

each student are obtained by 𝑥 = 𝑥𝑠 + 𝑤 cos 𝛼𝑗 and𝑦 = 𝑦𝑠 + 𝑤𝑠𝑖𝑛𝛼𝑗 . The last part in our calculation suggests 

the allocation of students to a school. To handle this issue, the average number of students for each school is 

calculated,and thenit is attempted to assign students to the closest school as long as the number of assigned 

students to each school reachesthe averagevalue. In this case, the students are assigned to the second closest 

school. This procedure continuesuntil all students are assigned properly.  The garage departure time was fixed to 

6:20 for all buses, and maximum arrival time to each school is randomly generated within the period (7:45 to 

8:15) a.m. 

 

5.2. Calibration of themetaheuristic parameters 

The proposed metaheuristic comprises of parameters that are essential to be set and tuned. This stage 

consists of statistical analyses to obtain a best parameter setting. This is conducted by full factorial experimental 

design of parameters on a subset of instances. The parameters considered for analysis are summarized in Table 4 

and include number of iterations (𝜌), number of iterations without improvements  𝛿 , minimum and maximum 

percentage of requests to be removed(𝜉𝑚𝑖𝑛 , 𝜉𝑚𝑎𝑥 ),parameter to control value of 𝑞𝑚𝑎𝑥  (𝜂),weight adjustment in 

roulette wheel mechanism(𝜍1 , 𝜍2, 𝜍3, γ), size of restricted candidate listα, and randomness parameter in the 

removal procedure (𝑝). The findings of the analysis are shown in Table 5. The output of Multi Anova highlights 

that number of iterations, number of iterations without improvements, the minimum and maximum number of 

requests to be removed, and the reaction factor for roulette wheel weight are all important factors that have an 

impact on both quality of solution and computing time (with P_value lower than 0.05). Among the results, it is 

clear that bothΦ and𝜍1are the parameters that significantly affect the quality of solution. The best parameter 

setting for further analysis is shown in the last column of Table 4.  

 

Table 4. Heuristic parameters 

 

Paramete

r 
Description Values 

Selected 

value 

𝜌 Defines the number of iterations 300,400,500 400 

𝛿 Define number of iterations without improvements 10,20 10 

𝜉𝑚𝑖𝑛  
Introduces minimum percentage of request, stops, to be removed at 

each ALNS iteration 
2%,5%,10% 5% 

𝜉𝑚𝑎𝑥  
Introduces maximum percentage of requests, stops, to be removed at 

each ALNS iteration 

15%,20%,25%,3

0%,35%,40%,45

% 

25% 

𝜂 Introduces the parameter to control the value of 𝑞𝑚𝑎𝑥  2,3 2 

p Is responsible for randomness in the removal process 2,4,6 4 

𝜍1 Is the weight adjustment of algorithm in roulette wheel mechanism 40,50,60 50 

𝜍2 Is the weight adjustment of algorithm in roulette wheel mechanism 20,30,40 20 
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𝜍3 Is the weight adjustment of algorithm in roulette wheel mechanism 1,5,10 5 

𝛾 Is the reaction factor of the weights in roulette wheel mechanism 0.25,0.5, 0.75 0.5 

α Size of the restricted candidate list 1,2,3,4 2 

 

Table 5. Best parameter setting  

Parameters Computing time  Average solution cost  

𝜌 p<0.05 p<0.05  

𝛿 p<0.05 p<0.05 

𝜉𝑚𝑖𝑛  p<0.05 p<0.05  

𝜉𝑚𝑎𝑥  p<0.05 p<0.05  

𝜂 0.162 0.084 

𝑝 0.082 0.079 

𝜍1 0.093 p<0.05 

𝜍2 0.054 0.809 

𝜍3 0.115 0.320 

𝛾 p<0.05 p<0.05 

α 0.193 p<0.05 

 

5.3. Heuristic calibration  

As mentioned in earlier stage, set of removal and insertion heuristics are considered for our problem. 

During the metaheuristic operation, a case might happen that some removal and insertion operators cannot 

improve the solution directly; but they provide the opportunity of escaping from local optima for other operators 

in next iterations, and as a result, a better quality of solutions is obtained toward the end of the search. More 

precisely, there may be an operator that delivers the weakest performance, but its presence triggers other 

operators to easily escape local optima. On the other hand, choosing a large number of removal and insertion 

operators demands more computing time, more time to explore in the solution space, and results in 

computational complexity. These evidences suggest that appropriate selection of removal and insertion 

operators is not straightforward and needs in-depth analysis. This helps in making a balance between computing 

time and quality of solution. To do so, similar to the section 5.2, full factorial experimentaldesign is conducted 

with levels shown in Table 6. It is worth mentioning that the other heuristic parameters are fixed at this stage 

and taken from section 5.2. A graphical output of results is shown in Figures 3 and 4. The analysis of variance 

(ANOVA) reveals that among the removal and insertion operators,shawremoval, worst removal and random 

removal heuristics with both basic greedy and regret k-heuristic provide a remarkable influence on the quality of 

solution. Moreover, the SLR and least used bus removal, basic greedy based on largest demand, and second-best 

insertion operators slightly improve the solution and display poorerperformance than other considered operators. 

As a result, the combination of both shawremoval, worst removal and random removal heuristics with both 

basic greedy and regret k-heuristic as insertion heuristicsis suggested for further analysis (sections 5.3 and 5.4). 

Table 6.Removal and insertion heuristics setting  

Heuristic Value No. of levels 
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Shaw removal (based on distance) On –off 2 

Shaw removal (based on demand) On –off 2 

Worst removal On –off 2 

Random removal On –off 2 

Least bus removal On –off 2 

SLR removal On –off 2 

Basic greedy On –off 2 

Basic greedy based largest demand On –off 2 

Second best insertion On –off 2 

Regret-k heuristic On –off 2 

 

 
 

Figure 3. Removal operators 

 

 
Figure 4. Insertion operators 

 

5.4.Computational experiments 

The experimentsare handled in two categories:1)analysis of metaheuristic configuration and 2) analysis of main 

characteristics.  
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5.4.1. Experimentson the configuration of metaheuristic 

In this section experimentsare carried out in order to understand the effect of each pair of removal and insertion 

operators embedded in ALNS metaheuristic on the quality of solution. In doing so, at the end of each segment, 

the weight of each pair of removal and insertion is calculated based on its attained score. This weightis related to 

the quality of solution. In practice, a pair of heuristics with higher weight will be chosen with higher probability 

and has the ability of providingbetter solutions throughout the search. 

Regarding this mechanism, the results suggest that shawremoval with any insertion heuristic producesthe 

highest weight.That interestingly demonstrates that what is more important is the similarity idea whether based 

on demand or distance. The random removal is ranked second.Therefore, it can be said that the Shaw removal 

heuristic orients the intensification stage and the random removal justifies the diversification. These findings 

further support the idea of using ALNSmetaheuristic. In practice, the ALNS enjoys a set of intensification and 

diversification heuristics that in case, some heuristics produce weak performance, while others can help to 

escape local optima properly.  

 

Table 7. Weight values for the pairs of removal and insertion heuristics 

Pair of removal and 

insertion heuristics 
Weight 

Pair of removal and 

insertion heuristics 

Weight 

Shaw removal 

(distance) and basic 

greedy 

46.37 
Random removal and basic 

greedy 

42.27 

Shaw removal 

(distance) with regret-

2 

53.19 
Random removal and 

regret-2 

41.10 

Shaw removal 

(distance) with regret-

3 

41.18 
Random removal and 

regret-3 

36.19 

Shaw removal 

(demand) and basic 

greedy 

41.13 
Worst removal and basic 

greedy 

19.45 

Shaw removal 

(demand) with regret-

2 

44.28 Worst removal and regret-2 
23.65 

Shaw removal 

(demand) with regret-

3 

37.17 
Worst  removal and regret-

3 

26.17 

5.4.2. Experiments on main characteristics  

In this section, we aim to compare the performance of proposed metaheuristic against the solution given by 

CPLEX solver. The characteristics of the test problem sizes and the results of metaheuristic and exact solutions 

are summarized in Appendix 1. The exact solution is reported as long as the optimal solution was found within 

30 minutes. Since the combination of removal and insertion heuristic cansuggest better performance (results of 

Section 5.4.1), we only consider it in this section. For the proposed approach (ALNS metaheuristic), each 

instance is run 10 times and finally, the amount of gap is presented.  Two percentage gaps are reported;  

Percentage gap between the average costs of the solutions calculated after 10 runs and exact solution, so called 

average gap and the percentage gap between the best solutions calculated after 10 runs, and exact solution, 

which is called best gap. As expected, while the problem size rises, approximately after instance 20, the exact 

method cannot find feasible solution within considered time. Thus, the exact method hasthe ability to optimally 

solve up to instance 20 in reasonable computing time. In comparison with the exact method, ALNS produces 

solutions with the average percentage gap from exact method lower than 2.5%, and finds optimal solutions in 7 

instances. In Figure 5, we compare the main characteristics (total travel time and total number of buses) when 

using a single and a mixed load strategy. It is worth mentioning that in this paper, the defined objective function 

is minimizing total travel time, but one of the main effects of mixed load is to reduce the number of buses. Thus, 

we also consider the behavior of total number of buses in our analysis. Our experiments clearly demonstrate that 

mixed load effect can significantly reduce the number of buses and total travel time. In case of total travel time, 

this deviation is more highlighted in large instances. The reason is that as the size of problem increases, there is 

more tendency to use small number of routes, and as a result more savings in travel time. On the other hand, this 

graph indicates that small instances have the lowest deviation. The reason is that for small sizes, the number of 
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schools is small and the performance of metaheuristic to take account of mixed load effect is not considerable. 

Opposite behavior is revealed for the number of routes, as it is clearly seen that for small instances, there is 

more deviation. Overall reduction in terms of the number of routes and total travel time is 11.36% and 14.56%, 

respectively, through utilizing mixed load effect. Additionally, in Figure 6 it is observed that average weighted 

riding time and route length are much smaller than mixed load method. On average, they were 7.8% and 8.43% 

smaller, respectively.  

 

  
Figure 5.(a) Reduction percentage in the number of routes (left side) and  (b) Reduction percentage 

in total travel time (right side) while considering mixed load effect 

 

  
Figure 6. (a) Increase percentage in average riding time (left side) and (b) total route length (right side) while 

considering mixed load effect 

 

Additionally, we analyze the rate of bus occupation (Figure 7) while considering mixed load effect. It reveals 

that the rate of bus occupation for small instances has the lowest deviation to the single load. In contrary, there 

is improvement in bus occupation while size increases. 
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Figure 7. Bus occupation percentage while considering mixed load effect 

 

To conclude, there are several factors affecting whether mixed load effect leads to savings in total travel time or 

not, and how much it benefits in terms of reduction in total time traveled compared to the case when mixed load 

is not considered. One determinant is the distance between schools. Specifically, when the schools are close 

together, there may be much savings since a bus can pick up students of multiple schools from stops and deliver 

them in a single route from the set of stops to the set of schools. On the other hand, nearness of stops can also 

affect the merit of mixed load but the distribution of students in each stop is greater importance. For instance, if 

stops with students of the same school are closer together, the benefit of mixed load diminishes. However, when 

stops are further apart and there are students from different schools in each stop, the mixed load would provide 

better opportunities for reduction in total travel time.  

 

5.4 Comparison with best-known solution and previous studies 

In order to evaluate the efficiency and effectiveness of the proposed metaheuristics, a comparison is carried out 

with a previous study in this field. In doing so, different configurations of the proposed metaheuristic (including 

simple LNS that contains one removal and insertion operator, and full adaptive configuration, ALNS)are 

compared with best-known solution in the literature. Five simple LNS heuristic configuration areShaw 

removal(based on demand) with basic greedy, Shaw removal(based distance) with Regret-2, random removal 

with Regret-2, worst removal with basic greedy and worst removal with Regret-3.For the sake of simplicity, the 

aforementioned LNS configurations are abbreviatedas LNS-1 to LNS-5, respectively.  

Since a new version of school bus routing problem is proposed in this paper, some adaptations need to be 

considered in our assumptions. In practice, in order to make a fair comparison with the study ofLima et al., 

(2016).,the following assumptionis set according to the benchmarked study: a unitary routing cost is set to 100$. 

More importantly, the location of students is considered in stops, so the student's home location is set in the 

candidate bus stops. The value of routing cost ($)rising from different kinds of metaheuristic (LNS and ALNS) 

are compared with the best known solution. Table 8 reports the routing cost of the proposed metaheuristics and 

the algorithm proposed by Fatima‘s study.  

Among the proposed configurations, ALNS generally results in the best values and less deviation to the study of 

Lima et al., (2016), such that for four  instances, better results are obtained, and for other cases, the deviation is 

negligible (the average deviation percentage is about 2%).  

 

Table 8. Comparison of different kinds of metaheuristic (LNS and ALNS) with best known solution 

Instance P(student) 
H(school

) 

ILS (best- 

known solution ) 
LNS-1 LNS-2 LNS-3 LNS-4 LNS-5 ALNS 

1 250.0 6.0 7,024.4 7,687.4 7,656.6 7,895.4 7,326.5 7,649.6 7,171.9 

2 250.0 12.0 10,575.0 11,697.0 11,315.2 11,732.6 10,797.0 11,283.5 10,839.3 

3 500.0 12.0 19,368.2 21,640.0 20,396.5 21,705.9 19,775.0 21,498.7 19,329.5 

4 500.0 25.0 27,066.3 30,520.1 29,231.6 30,612.9 29,502.3 29,889.3 26,714.4 

5 1,000.0 25.0 25,622.6 29,167.5 27,491.5 29,256.2 28,774.2 28,653.7 24,725.8 

6 1,000.0 50.0 65,139.5 70,350.7 66,308.2 70,564.7 72,891.1 73,021.4 68,982.8 
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7 2,000.0 50.0 89,398.6 106,309.5 99,232.5 106,632.9 100,394.7 104,381.9 92,536.5 

8 2,000.0 100.0 105,215.4 124,501.4 
117,347.

3 
113,632.7 117,841.3 127,415.9 108,161.5 

9 250.0 6.0 7,930.6 8,872.9 8,363.0 8,899.9 8,873.6 9,429.5 8,097.2 

10 250.0 12.0 12,224.6 14,318.4 13,569.3 12,591.3 13,153.6 13,202.5 12,399.4 

11 500.0 12.0 17,681.6 20,646.2 19,459.8 20,709.0 18,830.9 18,406.5 18,450.7 

12 500.0 25.0 23,037.7 25,802.3 24,189.6 25,880.8 23,498.5 25,721.6 23,751.9 

13 1,000.0 25.0 50,627.1 52,804.0 52,804.0 52,964.7 55,335.4 56,403.6 51,690.2 

14 1,000.0 50.0 66,558.9 71,218.0 71,218.0 71,434.7 68,089.8 81,135.3 66,560.4 

15 2,000.0 50.0 94,661.1 118,326.4 
111,700.

1 
118,686.3 98,447.5 108,216.5 97,747.0 

16 2,000.0 100.0 88,846.8 100,183.9 96,843.0 100,488.7 90,001.8 99,339.6 92,898.2 

17 250.0 6.0 10,812.2 12,308.0 11,785.2 12,345.5 11,298.7 11,989.6 11,162.5 

18 250.0 12.0 14,645.7 16,858.0 15,231.5 16,909.3 14,953.3 16,205.5 15,004.5 

19 500.0 12.0 21,840.4 24,898.0 23,467.3 24,973.8 22,779.5 23,996.0 22,342.7 

20 500.0 25.0 24,723.6 29,231.3 26,948.7 29,320.2 26,330.6 25,799.1 24,691.4 

Another interesting result worth nothing is that, on average,all considered LNS heuristicshave worse 

performance than the ILS algorithm in the literature.Thishighlightsthatfor this type of problem with the defined 

characteristics, relying only on a removal-insertion pair is not trustworthy, and a suitable combination of 

operators creates an effective outcome. Clearly speaking, random removal heuristic pursues a diversification 

strategy.Both Shaw and worst removal operators only concentrate on a small portion of solution space, as they 

can obtain better results in early iterations compared with other removal heuristics. However, while the solution 

reaches a high-quality level, the probability of being stuck in local optima rises.  However, when there is no 

possibility of operating the above-mentioned heuristics, there is a great likelihood of being trapped in a local 

optimum. This demonstrates that considering only one of the above set of removal operators individually cannot 

reduce the risk of being trapped in local optima. More importantly, some operators can improve the solution in 

the preliminary stage, while others can produce a profitable solution toward the end of the procedure. Thus, 

clever adoption of diversification and intensification operators could be helpful in the search, where in case one 

operator performs poorly another one will act effectively. The ALNS takes advantage of this situation and as a 

result finds better results. 

 

Conclusion  

This study aimed to introduce a novel mathematical formulation and solution methodologies for the 

urban school bus routing problem while considering mixedload effect. The attained results confirm that the 

proposed framework was effective, because it brings savings in cost than the single load framework. The 

characteristics of the SBRP in this study includehomogeneous buses, maximum allowable students to each stop, 

school arrival time, and multiple garages. In primary stage, the generated instance set,was solved using the 

formulation  by CPLEX solver in GAMS. Since the CPLEX solver has the ability of solving 20 instances in a 

reasonable computing time, the ALNS with a different configuration was proposed to solve all generated 

instances in a reasonable time.To investigate the algorithm efficiently, four lines of experiments are proposed. 

First,comparison of the single load and mixed load while investigating different outputs, including total traveled 

time and the number of buses. Second,analysis of different configurations of metaheuristic (e.g. each pair of 

removal and insertion operators embedded in ALNS metaheuristic on the quality of solution) is carried out.In 

the third line, the performance of proposed algorithm was compared with the solution given by 

GAMS/CPLEX.Finally, make a fair comparisonwith different study is conducted. In the earlier case, it is shown 

that consideringmixed load effect provides better solutions. With respect to student maximum riding time and 

total rough length, the results demonstrate that, on average, single load strategy can lead to producing lower 

values. This suggests that constraints for maximum riding time and total route length are necessary to be applied 

in further action. In the second analysis, among different combinations, the Shaw removal with Regret -2 gains 

more weight. In the third line,we compared the solution of the proposed metaheuristic against the solution of 

GAMS/CPLEX. The attained results show that average percentage gap from GAMS/CPLEX was lower than 

2.5%,and in 7 instances optimal solution is found . Finally, in comparison with the best study, the promising 

result observed whileconsidering the ALNS metaheuristic. The results of other LNS configurations were not 

very encouraging.  
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Several promising directions for further researches are available from the current study. Regarding the 

earlier direction, researchersmay be interested to include additional constraints and features in the proposed 

model to make it more closer to reality. More precisely taking account of simultaneous morning and afternoon 

delivery and pickup of students. A second research line is using a data structure to take account of the problem 

characteristics to reduce the complexity of the problem solving. This data structure can keep information about 

the neighborhood of the current solution while preserving problem characteristics (mixed load and morning- 

afternoon consideration).  
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Appendix 1: Results obtained by solving the instances contained in Sets S, M, and L 

In this section, detailed results of GAMS/CPLEX solver andthe ALNS metaheuristic are shown. Each table 

describes the details of the problem instances and also the results of  GAMS/CPLEX and metaheuristic methods 

 

Instance 

# 

Problem characteristics Results 

No. of 

schools 

No. of 

stops 

No. of 

students 

Capaci

ty 

Walking 

distance 

GAMS 

solution 

Best 

sol_meta 

Avg time 

(ms) 

% Best 

gap 

1 1 5 25 25 5 135.43 135.43 35 0.00 

2 1 5 25 50 5 242.62 247.56 97 2.04 

3 1 5 25 25 10 151.34 155.19 71 2.54 

4 1 5 25 50 10 224.68 224.68 46 0.00 

5 1 5 25 25 15 219.45 223.12 71 1.67 

6 1 5 25 50 15 177.50 177.50 50 0.00 

7 1 5 25 25 20 103.45 105.19 62 1.68 

8 1 5 25 50 20 155.47 155.47 69 0.00 

9 1 5 25 25 25 136.35 138.90 65 1.87 

10 1 5 25 50 25 65.98 68.34 113 3.58 

11 2 10 50 25 5 161.45 161.45 186 0.00 

12 2 10 50 50 5 267.21 272.12 214 1.84 

13 2 10 50 25 10 226.06 228.90 242 1.26 

14 2 10 50 50 10 326.34 330.23 252 1.19 

15 2 10 50 25 15 244.49 244.50 260 0.00 

16 2 10 50 50 15 234.68 243.12 244 3.60 

17 2 10 50 25 20 247.42 250.21 220 1.13 
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18 2 10 50 50 20 171.99 178.23 212 3.63 

19 2 10 50 25 25 167.22 169.12 174 1.14 

20 2 10 50 50 25 187.82 190.45 272 1.40 

21 3 15 75 25 5 

 

794.80 383 

 

22 3 15 75 50 5 

 

1012.46 345 

 

23 3 15 75 25 10 

 

958.37 390 

 

24 3 15 75 50 10 

 

1306.17 442 

 

25 3 15 75 25 15 

 

1243.76 347 

 

26 3 15 75 50 15 

 

1105.14 440 

 

27 3 15 75 25 20 

 

863.20 428 

 

28 3 15 75 50 20 

 

894.34 395 

 

29 3 15 75 25 25 

 

835.51 314 

 

30 3 15 75 50 25 

 

321.89 464 

 

31 4 20 100 25 5 

 

1760.12 891 

 

32 4 20 100 50 5 

 

2872.21 852 

 

33 4 20 100 25 10 

 

1919.67 967 

 

34 4 20 100 50 10 

 

1807.95 987 

 

35 4 20 100 25 15 

 

2456.78 659 

 

36 4 20 100 50 15 

 

2035.56 869 

 

37 4 20 100 25 20 

 

1169.80 1,141 

 

38 4 20 100 50 20 

 

1351.13 1,082 

 

39 4 20 100 25 25 

 

1431.12 659 

 

40 4 20 100 50 25 

 

912.34 904 

 

41 5 25 125 25 5 

 

1897.23 3,016 

 

42 5 25 125 50 5 

 

2182.69 3,000 

 

43 5 25 125 25 10 

 

1987.59 2,667 

 

44 5 25 125 50 10 

 

2878.45 2,723 

 

45 5 25 125 25 15 

 

3114.09 2,104 

 

46 5 25 125 50 15 

 

2304.29 2,396 

 

47 5 25 125 25 20 

 

1455.34 3,903 

 

48 5 25 125 50 20 

 

1678.32 3,345 

 

49 5 25 125 25 25 

 

1790.32 1,785 

 

50 5 25 125 50 25 

 

1903.34 2,585 

 

51 6 30 150 25 5 

 

1900.34 11,912 

 

52 6 30 150 50 5 

 

2234.19 14,565 

 

53 6 30 150 25 10 

 

2543.19 8,142 

 

54 6 30 150 50 10 

 

2664.45 9,970 

 

55 6 30 150 25 15 

 

2732.21 7,805 

 

56 6 30 150 50 15 

 

2021.45 9,801 

 

57 6 30 150 25 20 

 

1450.39 15,648 

 

58 6 30 150 50 20 

 

2097.34 13,211 

 

59 6 30 150 25 25 

 

1891.13 7,219 

 

60 6 30 150 50 25 

 

2793.12 9,466 

 

61 7 35 175 25 5 

 

2121.34 43,367 

 

62 7 35 175 50 5 

 

3043.12 63,767 

 

63 7 35 175 25 10 

 

2570.57 38,718 

 

64 7 35 175 50 10 

 

4096.50 42,285 

 

65 7 35 175 25 15 

 

3362.22 30,057 

 

66 7 35 175 50 15 

 

3021.54 34,506 

 

67 7 35 175 25 20 

 

3098.45 69,988 

 

68 7 35 175 50 20 

 

2560.87 62,995 

 

69 7 35 175 25 25 

 

2272.12 32,626 

 

70 7 35 175 50 25 

 

2341.34 45,017 

 

71 8 40 200 25 5 

 

3023.32 208,465 

 

72 8 40 200 50 5 

 

3957.43 330,594 

 

73 8 40 200 25 10 

 

3652.32 164,202 

 

74 8 40 200 50 10 

 

4432.12 178,967 

 

75 8 40 200 25 15 

 

5034.21 127,729 

 

76 8 40 200 50 15 

 

4321.14 146,634 

 

77 8 40 200 25 20 

 

4567.23 347,841 

 

78 8 40 200 50 20 

 

3457.21 309,300 

 

79 8 40 200 25 25 

 

3094.32 155,156 

 

80 8 40 200 50 25 

 

3101.15 240,337 

 

81 9 45 225 25 5 

 

3987.21 763,417 

 

82 9 45 225 50 5 

 

4976.54 1,056,142 

 

83 9 45 225 25 10 

 

4674.23 601,323 

 

84 9 45 225 50 10 

 

4867.12 692,230 

 

85 9 45 225 25 15 

 

4523.13 523,622 

 

86 9 45 225 50 15 

 

3987.12 614,957 
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87 9 45 225 25 20 

 

4231.23 1,418,512 

 

88 9 45 225 50 20 

 

4578.20 1,328,981 

 

89 9 45 225 25 25 

 

4309.21 673,320 

 

90 9 45 225 50 25 

 

3211.98 1,039,881 

 

91 10 50 250 25 5 

 

4219.20 2,396,318 

 

92 10 50 250 50 5 

 

5396.95 4,116,779 

 

93 10 50 250 25 10 

 

4748.18 1,949,401 

 

94 10 50 250 50 10 

 

5763.43 2,938,713 

 

95 10 50 250 25 15 

 

5626.40 1,821,001 

 

96 10 50 250 50 15 

 

4473.65 2,114,905 

 

97 10 50 250 25 20 

 

4514.68 4,276,218 

 

98 10 50 250 50 20 

 

4352.37 4,091,803 

 

99 10 50 250 25 25 

 

4228.80 2,408,016 

 

100 10 50 250 50 25 

 

4589.78 3,968,672 

 

 

  


